记yolov5训练一次超低级的失误 输出都是item

一篇关于使用Yolov5进行训练时遇到的问题文章,作者发现由于误设置了'single_cls'参数为真,导致所有识别都归为一类。讨论了此参数的作用及解决方法,提醒开发者注意此类隐藏配置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

yolov5 训练了2天,结果发现所有的识别全部都是一个标签…这是为何??
在这里插入图片描述
后来经过跟踪发现,原来是有个参数叫 single_cls, 这个参数默认应该是false, 因为开发新系统这个地方设置成了true. 所以不管你yaml里面设置成多少个分类都会被归为一类… 不知道这是谁加的这个参数. 这样的参数有啥用呀…

### YOLOv5 的 Anchor 基于方法分析 YOLOv5 是一种基于 anchor 的目标检测算法。其核心思想继承了早期版本的 YOLO 系列设计思路,即通过预定义的一组锚框 (anchors) 来匹配真实边界框的位置和大小[^1]。具体来说,YOLOv5 使用一组固定的先验框(anchor boxes),这些先验框是在训练数据集上通过对标注框的高度和宽度分布进行聚类得到的。 #### 锚框的作用 在 YOLOv5 中,每个网格单元会负责预测与其最接近的真实框相匹配的锚框。为了提高精度,网络会对锚框的偏移量、宽高比例以及其他属性进行调整。这种方法的优点在于能够更精确地捕捉不同尺度的目标对象,但也增加了计算复杂度和内存消耗[^3]。 #### 实现细节 以下是 YOLOv5 中 anchor-based 方法的具体实现: 1. **锚框初始化**: 在训练阶段,YOLOv5 需要提前设定好一系列固定尺寸的锚框集合。通常情况下,这一步骤依赖 K-means 聚类技术完成,目的是让生成的锚框尽可能覆盖实际场景中的各种物体形状。 2. **损失函数构建**: 对应每一个候选位置上的多个可能类别标签及其对应的置信度得分,模型采用了交并比(IOU)作为衡量标准之一,并将其融入总误差项之中用于指导参数更新过程[^4]。 3. **多层特征金字塔结构(Neck)**: 为了让小目标也能获得较好的识别效果,YOLOv5引入FPN(Feature Pyramid Network),使得低级语义信息可以更好地传递给高层抽象表示,从而增强整体性能表现. ```python def compute_loss(predictions, targets, anchors): """ 计算YOLOv5的loss 参数: predictions: 模型输出的预测值 targets: 真实标签 anchors: 定义好的锚框 返回: 总Loss值 """ pass ``` 尽管如此,值得注意的是随着研究进展和技术迭代升级,后续版本如 PP-YOLOE 已经转向完全无锚点的设计理念,摒弃传统意义上的手工设置初始参考矩形框模式而改用更加灵活高效的新策略比如 RepVGG 结构配合 CSP 改良版残差连接形式再加上其他辅助组件共同作用下达成更快收敛速度同保持较高准确率水平[^2]. --- ###
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值