- 博客(248)
- 收藏
- 关注
原创 面向对象之封装
封装是面向对象编程的核心特性之一。它将对象的属性和行为封装在一起,隐藏对象的内部实现细节,只通过公开的接口(方法)与外界交互。封装的好处是可以保护对象的内部状态,防止外部代码直接访问和修改对象的属性,从而提高代码的安全性和可维护性。
2025-07-06 14:42:44
124
原创 类(JavaBean类)和对象
1、创建类的对象(例:创建一个手机的对象)对象:是正式存在的具体东西(new的才是对象)3、访问行为: 对象名.方法名(...)2、访问属性: 对象名.成员变量。类:是对象共同特征的描述。
2025-07-05 20:47:20
219
原创 优化 ArcPy 脚本性能
如果硬件条件允许,可以使用 Python 的并行处理模块(如)来同时处理多个小任务。这样可以充分利用多核处理器的优势,提高脚本的执行效率。使用并行处理可以显著提高脚本的执行效率,但需要注意合理分配内存和处理器资源,避免因资源竞争导致的性能下降。
2025-06-27 22:44:25
296
1
原创 优化 ArcPy 脚本性能
合理设置环境变量可以优化脚本的性能。例如,设置“workspace”环境变量可以指定默认的工作空间,避免在脚本中重复指定工作空间路径。对于大型地理处理任务,可以将其分解为多个小任务,逐步处理。例如,在处理大型栅格数据集时,可以将其分成多个小块,逐块处理。将大型任务分解为多个小任务后,可以逐个处理每个小任务,避免内存溢出问题,提高脚本的稳定性。此外,还可以设置“extent”环境变量来限制处理的范围,减少不必要的计算和内存占用。通过合理设置环境变量,可以优化 ArcPy 脚本的性能,减少内存占用。
2025-06-26 22:37:15
261
原创 优化 ArcPy 脚本性能
在某些情况下,即使删除了对象,内存也可能不会立即释放。这是因为 Python 的垃圾回收机制可能没有及时触发。在这种情况下,可以手动触发垃圾回收,以确保内存被释放。在 ArcPy 脚本中,当某些对象(如要素类、表、游标等)不再被使用时,应及时删除这些对象。使用“in_memory”工作空间可以有效减少磁盘 I/O 操作,同时避免创建不必要的数据副本,从而提高脚本的性能。删除对象后,Python 的垃圾回收机制会回收这些对象占用的内存,从而减少内存占用。语句来删除对象,释放其占用的内存。
2025-06-25 21:16:20
227
原创 优化 ArcPy 脚本性能
可以通过设置查询条件(where_clause)或分块处理(chunking)来限制游标的作用范围。例如,如果只需要处理满足特定条件的记录,可以在创建游标时指定 where_clause 参数。ArcPy 提供了游标(cursor)对象,用于遍历和操作要素类或表中的记录。在使用游标时,推荐使用上下文管理器(with 语句)。这样可以确保在游标使用完毕后,自动释放相关资源,避免内存泄漏。使用上下文管理器可以有效减少内存占用,因为游标在退出上下文块时会自动关闭,释放占用的内存。
2025-06-24 20:31:43
245
原创 优化 ArcPy 脚本性能
此外,ArcPy 的某些对象(如游标、要素类等)在使用完毕后,如果没有正确释放,可能会导致内存泄漏,进而影响整个脚本的性能。例如,如果只需要存储简单的键值对关系,使用 Python 的字典(dictionary)而不是列表(list)嵌套结构,可以更高效地利用内存。对于栅格数据,选择合适的格式也很关键。一些格式(如 GeoTIFF)支持高效的读写操作,而另一些格式可能会导致不必要的内存消耗。例如,在处理要素类时,如果只需要存储要素的某些属性值,可以使用列表或元组来存储这些值,而不是创建完整的要素对象。
2025-06-23 21:07:55
219
原创 在 ArcPy 脚本中进行错误处理和调试
参数将错误的堆栈信息也记录到日志文件中。这样,即使脚本在无人值守的情况下运行,我们也可以通过查看日志文件来了解脚本的执行情况和遇到的问题。对于复杂的 ArcPy 脚本,尤其是那些需要长时间运行的脚本,使用日志记录是一种很好的调试和监控手段。模块可以帮助我们记录脚本的运行状态、错误信息等。块中,我们记录了脚本的关键操作步骤,而在。块中,我们记录了错误信息,并通过。在上述代码中,我们配置了日志文件。,并将日志级别设置为。
2025-06-22 19:25:56
212
原创 在 ArcPy 脚本中进行错误处理和调试
是一个非常强大的工具,可以帮助我们逐步执行脚本、检查变量的值、设置断点。等在 ArcPy 脚本中,也可以使用。除了错误处理机制外,使用调试工具可以大大提高 ArcPy 脚本的开发效率。当脚本执行到这行代码时,会进入调试模式。(continue):继续执行脚本,直到遇到下一个断点。时,会暂停执行,此时可以在命令行中输入各种调试命令。,我们可以更直观地了解脚本的执行流程,快速定位问题。(next):执行下一行代码。Python 的内置调试器。(quit):退出调试模式。
2025-06-21 22:47:13
345
原创 在 ArcPy 脚本中进行错误处理和调试
方法会返回一个包含错误代码、错误消息和可能的解决方案的字符串。这对于理解 ArcPy 工具为何失败非常有帮助。对于 ArcPy 的错误,除了错误消息外,还可以获取错误代码和更详细的错误信息。当捕获到错误后,查看详细的错误信息对于定位问题和解决问题至关重要。这将输出错误的简要描述,如“字段不存在”、“表达式语法错误”等。块中,可以直接打印错误对象来获取错误消息。
2025-06-20 21:25:06
224
原创 在 ArcPy 脚本中进行错误处理和调试
是 ArcPy 特有的错误类型,通常与地理处理工具的执行失败有关。通过单独捕获这种错误,我们可以更精确地处理与 ArcPy 工具相关的问题,而将其他非 ArcPy 相关的错误(如 Python 的语法错误、逻辑等错误)归入通用的。块中的代码是尝试执行的 ArcPy 操作,例如对某个要素类进行缓冲区分析。如果在执行过程中出现任何错误(如输入要素类不存在、输出路径不可写等),这些错误会被。ArcPy 中可能会抛出多种类型的错误,有时我们可能希望针对特定类型的错误进行处理。块捕获,并将错误对象存储在变量。
2025-06-19 20:52:55
232
原创 arcpy数据分析自动化(4)
通过将统计结果保存为 Excel 文件,我们可以轻松地进行进一步的分析和报告编写。最后,我们将统计结果输出为一个 Excel 文件,方便进一步分析和报告。
2025-06-18 20:24:26
90
原创 arcpy数据分析自动化(3)
接下来,我们需要计算不同土地利用类型的变化面积。假设我们有两个时间点的土地利用数据,分别存储在不同的要素类中。,我们可以计算出每个土地利用类型的变化面积,并将结果保存到一个新的要素类中。
2025-06-17 20:55:14
236
原创 arcpy数据分析自动化(2)
在提取数据后,我们需要对字段进行标准化处理,例如统一土地利用类型的命名。,我们可以遍历每个要素类并更新字段值,确保字段命名的一致性。
2025-06-16 21:19:49
173
原创 arcpy数据分析自动化
这段代码会从每个地理数据库中提取包含“Land_Use”关键字的要素类,并将其保存到统一的地理数据库中。假设土地利用数据存储在多个地理数据库中,我们需要将这些数据提取到一个统一的地理数据库中。
2025-06-15 19:30:30
284
原创 在GIS 工作流中实现数据处理(4)
通过将统计结果输出为 Excel 文件,方便城市规划人员进行进一步的分析和报告编写。同时,在 ArcMap 中加载城市中心区域的土地利用数据,可以直观地展示土地利用情况,为规划决策提供有力的支持。最后,我们将统计结果输出为一个 Excel 文件,并在 ArcMap 中对城市中心区域的土地利用情况进行可视化展示。
2025-06-13 22:12:27
521
原创 在GIS 工作流中实现数据处理(3)
现在数据已经清洗完成,接下来我们对特定区域的土地利用类型进行统计分析。假设我们有一个城市中心区域的边界 shapefile 文件,我们想要统计该区域内每种土地利用类型的面积。对裁剪后的数据进行统计分析,生成一个统计表格,其中包含每种土地利用类型的总面积。将城市中心区域边界内的土地利用数据裁剪出来,然后使用。
2025-06-12 21:42:53
197
原创 在GIS 工作流中实现数据处理(2)
在合并数据后,我们发现有些土地利用类型字段存在不一致的命名,例如“居住用地”和“居住区用地”实际上是同一类型。我们需要对这些字段进行标准化处理。这里,我们定义了一个字段映射字典,将不一致的字段值映射到统一的标准值。遍历地理数据库中的每个要素类,更新字段值。
2025-06-11 22:22:24
507
原创 在GIS 工作流中实现数据处理
通过将 ArcPy 应用于实际的 GIS 工作流,我们可以高效地完成数据处理任务,节省大量时间和精力。接下来,本文将结合具体案例,详细介绍如何运用 ArcPy 实现 GIS 数据处理的全流程。
2025-06-10 22:05:23
285
原创 ArcPy扩展模块的使用(3)
模块允许用户管理布局、地图、报表、文件夹连接、视图等工程项目。例如,可以更新、修复或替换图层数据源,修改图层的符号系统,甚至自动在线执行共享要托管在组织中的工程项。
2025-06-09 20:55:50
206
原创 ArcPy扩展模块的使用
可以操作地图上的元素,例如更新图片、公司徽标或更新文本字符串等。此外,还可以扩展地理处理脚本工具以直接使用地图、布局和其他工程元素。
2025-06-07 19:06:55
222
原创 arcpy与扩展模块
arcpy.mp是ArcPy站点包的一部分,随ArcGIS Pro一同安装,并对所有许可均可用。它主要用于操作现有工程(.aprx)和图层文件(.lyrx)的内容,可以自动化工程的内容,甚至无需打开应用程序。在某些情况下,arcpy.mp提供了ArcGIS Pro中不可用的功能,例如构建完整的地图册,因为它包含用于导出、创建和管理PDF的函数。arcpy.mp。
2025-06-06 20:43:30
192
原创 使用ArcPy进行栅格数据分析(2)
土地覆盖分类是栅格数据分析中的另一个重要应用,例如将遥感影像数据分类为不同的土地覆盖类型。监督分类需要用户根据已知的地面样点信息,创建训练样本,然后选择合适的分类算法进行分类。地形分析是栅格数据分析中的重要应用之一,例如计算坡度、坡向和坡度曲率等。叠加分析是栅格数据分析中的重要方法,用于综合考虑多个栅格数据层的信息。加权叠加分析可以根据不同的权重对多个栅格数据层进行综合分析。非监督分类不需要训练样本,而是通过算法自动将数据分类。坡向分析可以帮助我们了解水流方向和植被分布规律。
2025-06-05 21:46:07
190
原创 使用ArcPy进行栅格数据分析
在开始编写脚本之前,需要设置好工作环境。这包括指定工作空间(workspace)和输出路径。工作空间是包含所有输入数据的文件夹或地理数据库,而输出路径则是处理结果将要保存的位置。在进行栅格数据分析之前,通常需要获取栅格数据的基本信息,如栅格的范围、分辨率、像元大小等。裁剪栅格数据是常见的操作之一,例如,你可能需要将一个较大的栅格数据裁剪到某个特定的范围内。
2025-06-04 22:29:52
425
原创 使用ArcPy生成地图系列
然后,通过设置时间范围和遍历时间步,动态更新地图框的时间步和标题,并将每个地图保存为PDF文件。然后,通过遍历范围图层的每个要素,动态更新地图框的范围和标题,并将每个地图保存为PDF文件。例如,可以按照行政区域划分生成地图系列,或者按照时间序列生成地图系列。这包括定义地图的页面大小、地图框的位置和大小、标题、图例等元素。基于时间的地图系列是指根据时间序列生成地图系列。基于范围的地图系列是指根据一定的范围划分生成地图系列。在上述代码中,首先加载了ArcGIS Pro项目文件,然后获取了地图布局和地图框。
2025-06-03 20:39:37
268
原创 使用ArcPy批量处理矢量数据
这包括指定工作空间(workspace)和输出路径。工作空间是包含所有输入数据的文件夹或地理数据库,而输出路径则是处理结果将要保存的位置。裁剪矢量数据是常见的操作之一,例如,你可能需要将一个区域内的所有矢量数据裁剪到某个特定的范围内。使用ArcPy,可以通过循环遍历待裁剪的矢量数据,并将其作为输入数据进行裁剪。获取了工作空间中所有的矢量数据。接着,它循环遍历这些数据,对每个数据执行裁剪操作,并将结果保存到指定的输出路径。这段代码首先设置了裁剪范围和工作空间,然后通过。
2025-06-02 20:07:28
268
原创 ArcPy错误处理与调试技巧(3)
运行脚本后,程序会在pdb.set_trace()处暂停,你可以通过命令行输入n(下一步)、c(继续执行)、q(退出调试)等命令来调试代码。Python提供了多种调试工具,如pdb(Python Debugger)。你可以使用pdb来设置断点、单步执行代码、检查变量值等。对于复杂的脚本,使用日志记录(logging模块)可以更系统地记录调试信息。在代码中添加print语句,可以帮助你了解程序的运行状态和变量的值。
2025-06-01 19:14:41
278
原创 ArcPy错误处理与调试技巧(2)
在Python中,异常处理机制通过try-except语句来实现。通过捕获和处理异常,可以避免程序因错误而崩溃,并提供更友好的错误信息。在这个例子中,如果Buffer_analysis工具执行失败,except块会捕获异常并打印错误信息。在这个例子中,分别捕获了ExecuteError、FileNotFoundError和其他未知错误。finally块中的代码无论是否发生异常都会执行,通常用于清理资源,如关闭文件、释放内存等。你可以捕获特定类型的异常,以便更精确地处理错误。2. 捕获特定类型的异常。
2025-05-31 20:15:30
287
原创 ArcPy错误处理与调试技巧
本文将详细介绍如何在ArcPy脚本中处理错误,包括常见的错误类型、异常处理机制以及调试技巧。这类错误通常是由于代码逻辑不正确,如条件判断错误、循环逻辑问题等。描述:ArcPy有一些特定的错误类型,如ExecuteError,通常与ArcPy工具的执行有关。描述:这是最常见的错误类型,通常是由于代码中存在拼写错误、缺少括号、错误的缩进等语法问题。描述:这类错误通常发生在脚本运行过程中,可能是由于输入数据无效、路径错误、权限问题等。如果你希望打印从1到10的数字,但实际打印的是从0到9,这就是一个逻辑错误。
2025-05-29 22:07:23
350
原创 3D Tiles高级样式设置与条件渲染(4)
对于点云数据,我们可以通过点的属性(如分类、强度等)来设置样式。1.根据点云属性设置颜色。三、点云数据的样式设置。
2025-05-28 20:42:15
188
原创 3D Tiles高级样式设置与条件渲染(3)
在某些应用中,我们可能需要根据建筑物与某个特定点(如地标建筑)的距离来设置样式。1.根据与特定点的距离设置样式。二、基于地理距离的条件渲染。
2025-05-27 22:48:04
463
原创 3d tiles高级样式设计与条件渲染
条件渲染是3D Tiles样式设置的一大亮点。我们可以通过设置不同的条件来实现复杂的视觉效果。这段代码会根据建筑物与广州塔的距离以及建筑物类型来决定其颜色和是否显示。
2025-05-26 20:14:10
484
原创 Cesium中根据不同条件设置3D Tiles样式
对于点云数据,`Cesium3DTileStyle`同样适用,并且支持`pointSize`属性。在实际应用中,我们可能需要根据多个条件来设置样式。
2025-05-25 20:52:27
243
原创 Cesium中根据不同条件设置3D Tiles样式
Cesium3DTileStyle`的常见属性包括`color`、`show`、`pointSize`和`heightReference`。其中,`color`属性用于控制对象的颜色,可以设置静态颜色值或者基于属性的动态条件。在Cesium中,3D Tiles是一种用于高效加载和渲染大规模三维模型的技术,而`Cesium3DTileStyle`则是对3D Tiles进行样式设置的强大工具。通过它,我们可以根据不同的条件动态地改变3D Tiles的外观,从而实现丰富的可视化效果。
2025-05-24 20:49:14
760
原创 3dczml时间动态图型场景
在cesium中我们了可以使用czml数据来生成可以随时间变化而变化的物体.最后 保存运行即可得到一个会随着时间变化而移动的小球。首先导入czml数据。
2025-05-23 23:15:14
240
原创 czml数据以及应用
CZML(Cesium Language)是Cesium团队制定的一种基于JSON的动态数据格式,用于描述三维场景中的几何图形、模型及其随时间的变化。点击后我们可以看到自己命名的名称以及蓝色盒子。在cesium中我们可以引入czml数据.
2025-05-22 18:34:45
262
原创 kml数据生成全球科学研究所地理标记
保存后打开我们可以看到已经获取到了数据对应的信息以及对应地理坐标。在cesium我们同样可以导入kml数据进行操作.首先在cesium官网中找到使用kml数据的方法。根据官网给定的代码在我们自己的程序中添加数据。
2025-05-21 19:16:58
175
原创 自定义geojson生成物体的样式
在上节我们学习了如何在cesium中导入geojson数据,本节我们来学习如何让它变得更加炫酷.保存后打开就可看到炫酷的地图了。
2025-05-20 20:13:38
268
原创 加载渲染geojson数据
想要加载geojson数据首先要有数据源,我们以中国地图为例。本节我们学习如何在cesium中加载geojson数据。可以看见中国地图已经导入我们的cesium中。可以看到如何在cesium中导入数据的方法。在cesium的官网库中查询。复制数据的geo api。
2025-05-19 20:06:44
348
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人