多模态大模型:InternLM-XComposer系列

本文深入探讨了InternLM-XComposer系列多模态大模型,包括InternLM-XComposer和InternLM-XComposer2,它们旨在解决高级图像-文本理解和组合问题。模型通过预训练和监督微调,结合视觉编码器、感知采样器和大型语言模型,实现了在多模态任务中的先进性能。实验结果显示,InternLM-XComposer在多个基准测试中取得最佳成绩,展示了在文本-图像组合和多语言理解方面的强大能力。InternLM-XComposer2则通过部分LoRA方法进一步增强了视觉理解和文本组合能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多模态大模型关于RLHF的代表性文章

一、InternLM-XComposer

题目: InternLM-XComposer: A Vision-Language Large Model for Advanced Text-image Comprehension and Composition
机构:上海人工智能实验室
论文: https://arxiv.org/abs/2309.15112
代码:https://github.com/InternLM/InternLM-XComposer
任务: 交织文本-图像理解的多模态大模型
特点:
方法:
前置相关工作:CLIP、BLIP、LLaVA、MiniGPT-4、InstructBLIP

1.1 出发点

这篇论文提出了InternLM-XComposer,这是一个视觉-语言大型模型,旨在解决高级图像-文本理解和组合的问题。具体来说,它试图解决以下问题:

  1. 交织文本-图像组合:InternLM-XComposer能够生成与图像无缝结合的连贯、上下文相关的文章,提供更吸引人和沉浸式的阅读体验。它可以根据写作指令智能地生成文章,并在文本中找到合适的位
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猴猴猪猪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值