企业供应链风险感知数据发表UTD顶刊Management Science!

借鉴Compustat、WRDS等国际知名数据库及FT50期刊专业标准,打造中国特色经济管理社会科学研究型数据库。涵盖上市公司、省份、地级市、专精特新等研究对象,涵盖经济、法律、金融、政策、科技、文化、健康、环保、人口等各类热点数据。顶刊标准数据,好数据,助力发顶刊。

1892

上市公司供应链风险感知(2010-2023)

数据简介

近期时日关税战烈度的持续上升对全球供应链体系造成了持续性波动,而此衍生出了大量各方面复杂性与不确定性。在这方面,上市公司管理层会格外关注在此背景下,各种相关供应链的风险会对其投资效率的影响。因此,研究上市公司管理层供应链风险感知对指定因素的影响,成为了一个具有重要意义的方向。

因此,为了方便大家在这个方向上的研究,我们参考罗丹,李婉丽和徐香等(2025)的MD&A文本分析法:

1.选择2010-2021年A股上市公司企业为样本(我们扩充至2023年)

2.剔除被ST、*ST的企业

3.剔除金融行业及房地产行业样本

接下来根据他们的文本分析法进行如下整理:

1.分别构建“供应链”与“风险”关键词词典

a)“供应链”词典:用Wu(2024)中人工神经网络训练结果30个高度相似的供应商词汇翻译成中文,部分如“供应商/采购/链条/供应链”等。接着随机选取50份MD&A文本,人工阅读提取关于供应链的关键词。最后通过大语言模型,查找与前面所得词汇相似的关键词,人工判断选取来补充。最终所得114个关键词。

b)“风险”关键词词典:基于“风险”、“不确定性”、“可能”、“波动”,通过大语言模型查找并人工挑选相近词来扩充,最终所得100个关键词。

2.将MD&A文本中的非中文字符及停用词去除(我们用的是哈工大停用词库)

3.用Python的jieba进行分词

4.分词分析法:

图片

基于分词结果排列序列组合,先定位“供应链”关键词,并找出其前后是个词汇中是否出现“风险”关键词,如果出现,就算一次,并记录这种共现情况的次数,在数据中我们标记该变量为“关键词共现”。最后对该变量进行取对数处理,结果变量名称为“SCR_W”。

5.分字分析法:

图片

基于原MD&A文本,先定位“供应链”关键词,截取前后15个字符,并在该部分中判断是否出现“风险”关键词,如果出现,就记录这种情况中的该“供应链”关键词的字符数,最后基于公司-年份进行汇总。在数据中我们标记该变量为“共现供应链总字符数”。最后对该变量进行取对数处理,结果变量名称为“SCR_C”。

数据来源

A股上市公司年报中提取的MD&A文本,由数据皮皮侠团队人工整理,全部内容真实有效。

数据范围

中国A 股上市公司

时间跨度

2010-2023

数据格式

数据格式为Excel形式

数据指标

证券代码

证券简称

年份

总词汇数

关键词共现

SCR_W

共现供应链总字符数

SCR_C

数据展示

图片

图片

参考文献

[1]罗丹,李婉丽,徐香,等.供应链风险感知与企业投资效率[J].科学决策,2025,(01):82-105.

[2]Wu, D. Text-Based Measure of Supply Chain Risk Exposure[J]. Management Science, 2024, 70(7): 4781-4801.

声明:本数据由数据皮皮侠团队整理,仅用于学术研究

### UTD 数据集的相关信息 UTD-MHAD 是一种用于动作识别研究的多模态数据集,包含了惯性测量单元 (IMU) 和 RGB-D 视频两种类型的传感器数据。该数据集由 University of Texas at Dallas 提供,旨在支持基于人体运动的动作分类和识别的研究工作[^1]。 #### 下载方法 如果需要获取 UTD-MHAD 数据集,可以通过以下方式完成下载: 1. **官方资源页面**: 访问 UTD-MHAD 官方网站或相关学术论文中的补充材料部分,通常会提供直接的下载链接。以下是可能的访问地址(需确认最新版本): [https://www.utdallas.edu/~xb857900/mhad.html](https://www.utdallas.edu/~xb857900/mhad.html) 2. **Git 命令克隆特定目录**: 如果您希望从 OpenHarmony 工程中提取与 UTD 数据集相关的代码实现,可按照以下 Git 操作流程进行操作[^4]: ```bash git init git config core.sparsecheckout true echo code/BasicFeature/DataManagement/UDMF/UniformTypeDescriptor/UTDType/ > .git/info/sparse-checkout git remote add origin https://gitee.com/openharmony/applications_app_samples.git git pull origin master ``` 上述命令仅适用于从指定仓库中拉取与 UTD 类型描述符相关的代码逻辑,而非实际数据文件本身。 #### 使用说明 对于已成功下载的 UTD-MHAD 数据集,在使用前需要注意以下几个方面: - 数据集中包含 IMU 和 Kinect 录制的视频片段,分别存储于不同的子目录下。 - 文件命名规则遵循统一标准,便于解析和加载。 - 推荐采用 MATLAB 或 Python 等工具读取原始二进制文件并转换为适合模型训练的形式。 例如,利用 Python 加载 CSV 格式的 IMU 数据样本: ```python import pandas as pd # 替换路径至您的本地数据位置 imu_data_path = "./UTD_MHAD/Inertial/a01_s01_t01.txt" dataframe = pd.read_csv(imu_data_path, header=None, sep=" ") print(dataframe.head()) ``` 关于跨平台兼容性和标准化问题,由于不同设备间可能存在编码差异,建议在导入过程中明确定义字符集及排序规则,以避免潜在错误[^3][^5]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值