使用Vearch进行向量搜索和存储的实战指南

在AI和机器学习的领域中,随着数据量的增大和对模型性能要求的提升,能够高效存储和快速检索向量数据变得至关重要。Vearch是一个专为此设计的向量数据库,能够有效地应用于大语言模型(LLM)的数据存储和搜索。通过本文,你将了解如何设置和使用Vearch来处理向量数据。

技术背景介绍

Vearch是一个存储大语言模型数据的向量数据库,用于存储和快速检索模型embedding后的向量。其优势在于支持多种语言模型,包括OpenAI、Llama、ChatGLM等,并与LangChain库集成以提供更强的兼容性和可用性。另外,Vearch是基于C语言和Go语言开发的,提供了方便的Python接口,简化了开发者的使用流程。

核心原理解析

Vearch通过embedding将文本数据转换为向量,存储于其数据库中。搜索时,Vearch利用其构建的索引对嵌入向量进行相似度计算,快速返回相关结果。该过程保证了良好的性能和精准度,使Vearch适合需要实时响应的应用场景。

代码实现演示

以下是一个完整的代码示例,展示了如何在本地环境中设置Vearch来处理文档数据。

from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores.vearch import Vearch
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from transformers import AutoModel, AutoTokenizer

# 替换为你的本地模型路径
model_path = "/data/local_model/chatglm2-6b"

# 初始化模型
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().cuda(0)

# 加载本地文件
file_path = "/data/local_data/lingboweibu.txt"
loader = TextLoader(file_path, encoding="utf-8")
documents = loader.load()

# 文本切分
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
texts = text_splitter.split_documents(documents)

# 嵌入处理
embedding_path = "/data/local_model/text2vec-large-chinese"
embeddings = HuggingFaceEmbeddings(model_name=embedding_path)

# 将文档添加到Vearch向量存储
vearch_standalone = Vearch.from_documents(
    texts,
    embeddings,
    path_or_url="/data/vearch_db/localdb",
    table_name="localdb_table",
    flag=0,
)

query = "你知道凌波微步吗,你知道都有谁会凌波微步?"
vearch_standalone_res = vearch_standalone.similarity_search(query, 3)
for idx, tmp in enumerate(vearch_standalone_res):
    print(f"{'#'*20}{idx+1}段相关文档{'#'*20}\n\n{tmp.page_content}\n")

# Combine query with local knowledge
context = "".join([tmp.page_content for tmp in vearch_standalone_res])
new_query = f"基于以下信息,尽可能准确地来回答用户的问题。背景信息:\n {context} \n 回答用户这个问题:{query}\n\n"
response, history = model.chat(tokenizer, new_query, history=[])
print(f"********ChatGLM:{response}\n")

应用场景分析

Vearch的应用场景包括但不限于:

  • 个性化知识库:存储用户个人知识,结合大语言模型进行个性化问答。
  • 实时搜索系统:在高并发环境下实时处理和检索用户请求。
  • AI辅助系统:通过Embedding技术,提升AI系统的理解和应答能力。

实践建议

在实战中使用Vearch时,建议如下:

  1. 选择合适的嵌入模型:根据数据类型和应用场景选择最适合的嵌入模型,以保证搜索精度。
  2. 优化数据流:合理分批和切分文本,既提高处理效率又保持信息完整性。
  3. 安全管理API Key:确保API密钥的安全使用,防止未授权访问。

如果遇到问题欢迎在评论区交流。

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值