
博客首发专栏【仅粉丝可读】
文章平均质量分 91
本专栏主要为文章首发,供粉丝阅读。近期将围绕一个具体的案例,详细阐述 RAG 应用从商业目标分析、技术选型、系统设计、开发实现、测试部署,直至后期运维和运营的全生命周期实践。无论您是技术开发者、产品经理还是对 RAG 应用感兴趣的业务决策者,本书都将为您提供一个全面且深入的视角。
技术与健康
躬耕技术领域多年,混过大厂,呆过创业公司。主要关注AI领域的大模型企业落地,AI辅助编程教育普及等内容,致力于AI创新和应用,推动AI赋能企业数字化转型
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
RAG实战 第七章:RAG 的前沿与未来展望
本章将对 RAG 技术进行总结,并展望其未来的发展方向。我们将探讨 RAG 如何与其他 AI 技术融合,以及在更复杂的应用场景中如何演进。同时,本章还将重点讨论 RAG 应用中不可忽视的伦理、隐私和安全挑战,并提出相应的风险管理策略,确保 RAG 技术的健康和负责任发展。原创 2025-06-26 06:41:50 · 15 阅读 · 0 评论 -
RAG实战 第六章:RAG 系统部署、监控与持续优化
将 RAG 应用从开发环境迁移到生产环境,并确保其长期稳定、高效、可靠地运行,是构建成功智能客服助手的最后也是最重要的一步。本章将引导读者完成 RAG 系统的部署,并详细讲解如何对其进行有效的监控、日志管理以及基于性能反馈进行持续优化的策略。原创 2025-06-25 08:02:49 · 347 阅读 · 0 评论 -
RAG实战 第五章:RAG 中的 LLM 生成与提示工程
本章将深入探讨 RAG 系统的另一个核心支柱——。我们将学习如何利用提示工程(Prompt Engineering)这一强大技术,引导 LLM 结合检索到的上下文信息,生成高质量、准确且符合需求的答案。本章还将涵盖优化生成效果的策略,以及如何处理 LLM 可能出现的幻觉问题。原创 2025-06-25 08:02:00 · 454 阅读 · 0 评论 -
RAG实战 第四章:RAG 检索增强技术与优化
本章将深入探讨 RAG 系统的核心——。我们将从最基础的相似度搜索开始,逐步讲解如何通过各种高级检索策略和优化技巧,确保 RAG 系统能够从海量知识库中精准、高效地找到最相关的上下文信息,从而显著提升生成答案的准确性和质量。原创 2025-06-24 23:01:48 · 642 阅读 · 0 评论 -
RAG实战 第三章:知识库构建与管理
本章将详细阐述 RAG 系统中最核心的“知识”部分——。我们将深入探讨从多样化的企业数据源中提取信息,经过清洗、切分、嵌入等处理,最终高效地存储于向量数据库,并实现后续更新与维护的全流程。高质量的知识库是 RAG 系统准确性和可靠性的基石。原创 2025-06-24 23:01:08 · 455 阅读 · 0 评论 -
RAG 应用实战指南:从商业目标到系统落地与运营 E2E 实践
在当今信息爆炸的时代,如何高效地从海量数据中提取有用信息并提供智能问答服务,成为众多企业关注的焦点。检索增强生成(Retrieval-Augmented Generation, RAG)技术以其结合了检索模型的精准性和生成模型的灵活性,为解决这一难题提供了强大的解决方案。本实战指南将围绕一个具体的案例,详细阐述 RAG 应用从商业目标分析、技术选型、系统设计、开发实现、测试部署,直至后期运维和运营的全生命周期实践。原创 2025-06-24 10:46:59 · 826 阅读 · 0 评论 -
RAG 实战 第二章:技术选型与架构设计
检索增强生成(RAG)系统之所以强大,在于它巧妙地结合了信息检索的精准性与大型语言模型(LLM)的生成能力。检索模块生成模块以及将两者有机结合并优化的编排与优化模块。原创 2025-06-24 10:45:01 · 592 阅读 · 0 评论 -
RAG实战 第一章:商业目标与需求分析
本章将深入探讨检索增强生成(RAG)应用的,并针对进行详细的需求分析。我们将从宏观视角审视 RAG 如何解决传统问答系统的痛点,延伸至其在各行各业的广阔应用前景,最后聚焦于我们实战案例的具体需求,并确立衡量成功的关键指标。原创 2025-06-24 10:44:20 · 256 阅读 · 0 评论