题目链接:
题目描述:
解题思路:
(1)逐个判断整数是不是丑数的解法
所谓一个数m是另一个数n的因子,是指n能被m整除,也就是n%m==0。根据丑数的定义,丑数只能被2,3和5整除。也就是说如果一个数能被2整除,我们把它连续除以2;如果能被3整除,就连续除以3;如果能被5整除,就连续除以5。如果最后我们得到的是1,那么这个数就是丑数,否则就不是。接下来,我们只需要按照顺序判断每一个整数是不是丑数即可。
代码:
import java.util.Scanner;
public class ugleNum {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
System.out.println(GetUglyNumber_Solution(n));
}
public static int GetUglyNumber_Solution(int index) {
int i = 0;
int count = 0;
while(count< index) {
i++;
if(isUgleNum(i)) {
count++;
}
}
return i;
}
public static boolean isUgleNum(int num) {
while(num%2 == 0) {
num = num /2;
}
while(num%3 == 0) {
num = num /3;
}
while(num%5 == 0) {
num = num /5;
}
if(num ==1) {
return true;
}else {
return false;
}
}
}
(2)创建数组保存已经找到的丑数,用空间换时间的解法
上面算法之所以效率低,很大程度上是因为不管一个数是不是丑数我们都要对它进行计算。那么我们可以找到一种只要计算丑数的方法,而不再非丑数上花费时间。根据丑数的定义,丑数应该是另一个丑数乘以2、3或者5的结果(1除外)。因此我们可以创建一个数组,里面的数字是排好序的丑数,每一个丑数都是前面的丑数乘以2、3或者5得到的。
这种思路的关键在于怎么样确保数组里面的丑数是排好序的。假设数组中已经有若干个丑数排好序后存放在数组中,并且把已有最大的丑数记做M,我们接下来分析如何生成下一个丑数。该丑数肯定是前面某一个丑数乘以2、3或者5的结果,所以我们首先考虑把已有的每个丑数乘以2。在乘以2的时候,能得到若干个小于或等于M的结果。由于是按照顺序生成的,小于或者等于M肯定已经在数组中了,我们不需要再次考虑;还会得到若干个大于M的结果,但我们只需要第一个大于M的结果,因此我们希望丑数是按从小到大的顺序生成的,其它更大的结果以后再说。我们把得到的第一个乘以2后大于M的结果记为M2。同样的,我们把已有的每一个丑数乘以3和5,能得到第一个大于M的结果M3和M5。那么下一个丑数应该是M2、M3和M5这3个数的最小者。
前面分析的时候,提到把已有的每个丑数分别乘以2、3和5。事实上这不是必须的,因为已有的丑数是按顺序存放在数组中的。对乘以2而言,肯定存在某一个丑数T2,排在它之前的每一个丑数乘以2得到的结果都会小于已有最大的丑数,在它之后的每一个丑数乘以2得到的结果都会太大。我们只需要记下这个丑数的位置,同时每次生成新的丑数的时候,去更新这个T2。对乘以3和5而言,也存在同样的T3和T5。
实现代码如下:
public class ugleNum2 {
public static void main(String[] args) {
// TODO Auto-generated method stub
System.out.println(GetUgleNumber_Solution(7));
}
public static int GetUgleNumber_Solution(int index) {
if(index <= 0) {
return 0;
}
int[] ugleNumbers = new int[index];
ugleNumbers[0] = 1;
int Multiply2 = 0;
int Multiply3 = 0;
int Multiply5 = 0;
for(int i=1; i<index; i++) {
int min = Min(ugleNumbers[Multiply2]*2, ugleNumbers[Multiply3]*3, ugleNumbers[Multiply5]*5);
ugleNumbers[i] = min;
//System.out.println(ugleNumbers[i]);
while(ugleNumbers[Multiply2]*2 == ugleNumbers[i])
Multiply2++;
while(ugleNumbers[Multiply3]*3 == ugleNumbers[i])
Multiply3++;
while(ugleNumbers[Multiply5]*5 == ugleNumbers[i])
Multiply5++;
}
return ugleNumbers[index-1];
}
public static int Min(int number1, int number2, int number3) {
int min = (number1 < number2) ? number1 : number2;
min = (min < number3) ? min : number3;
return min;
}
}