【LeetCode】62. Unique Paths

62. Unique Paths

Description:

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?


Above is a 7 x 3 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

Example 1:

Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Right -> Down
2. Right -> Down -> Right
3. Down -> Right -> Right

Example 2:

Input: m = 7, n = 3
Output: 28

解题思路:

 (1)动态规划解法

动态规划三要素:

1. 最优子结构:我们发现除去第一行第一列,其他二维数组中的数据都是由它上面格子和左边格子数据之和。

2. 边界条件:第一行、第一列都为1。

3. 状态转移方程:dp[i][j] = dp[i-1][j] + dp[i][j-1]

已经AC的代码:

class Solution:
    def uniquePaths(self, m, n):
        '''
        :param m: int 格子的列数
        :param n: int 格子的行数
        :return:  int  多少条独一无二的路径
        '''
        if not m or not n:
            return 0
        dp = [[1 for i in range(m)] for i in range(n)]
        for i in range(1,n):
            for j in range(1,m):
                dp[i][j] = dp[i-1][j] + dp[i][j-1]
        return  dp[-1][-1]

solution = Solution()
print(solution.uniquePaths(7,3))

Reference:

【1】Unique Paths I/II 【视频】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值