62. Unique Paths
Description:
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 7 x 3 grid. How many possible unique paths are there?Note: m and n will be at most 100.
Example 1:
Input: m = 3, n = 2 Output: 3 Explanation: From the top-left corner, there are a total of 3 ways to reach the bottom-right corner: 1. Right -> Right -> Down 2. Right -> Down -> Right 3. Down -> Right -> Right
Example 2:
Input: m = 7, n = 3 Output: 28
解题思路:
(1)动态规划解法
动态规划三要素:
1. 最优子结构:我们发现除去第一行第一列,其他二维数组中的数据都是由它上面格子和左边格子数据之和。
2. 边界条件:第一行、第一列都为1。
3. 状态转移方程:dp[i][j] = dp[i-1][j] + dp[i][j-1]
已经AC的代码:
class Solution:
def uniquePaths(self, m, n):
'''
:param m: int 格子的列数
:param n: int 格子的行数
:return: int 多少条独一无二的路径
'''
if not m or not n:
return 0
dp = [[1 for i in range(m)] for i in range(n)]
for i in range(1,n):
for j in range(1,m):
dp[i][j] = dp[i-1][j] + dp[i][j-1]
return dp[-1][-1]
solution = Solution()
print(solution.uniquePaths(7,3))
Reference: