1.过拟合的问题
到现在为止,我们已经学习了几种不同的学习算法,包括线性回归和逻辑回归,它们能够有效地解决许多问题,但是当将它们应用到某些特定的机器学习应用时,会遇到过拟合(over-fitting)的问题,可能会导致它们效果很差。
这篇将为你解释什么是过度拟合问题,并且在此之后接下来的几个视频中,我们将谈论一种称为正则化(regularization)的技术,它可以改善或者减少过度拟合问题。
如果我们有非常多的特征,我们通过学习得到的假设可能能够非常好地适应训练集(代价函数可能几乎为 0),但是可能会不能推广到新的数据。
下图是一个回归问题的例子:
第一个模型是一个线性模型,欠拟合,不能很好地适应我们的训练集;第三个模型是一个四次方的模型,过于强调拟合原始数据,而丢失了算法的本质:预测新数据。我们可以看出,若给出一个新的值使之预测,它将表现的很差,是过拟合,虽然能非常好地适应我们的训练集但在新输入变量进行预测时可能会效果不好;而中间的模型似乎最合适。
分类问题中也存在这样的问题:
以多项式理解,𝑥 的次数越高,拟合的越好,但相应的预测的能力就可能变差。
问题是,如果我们发现了过拟合问题,应该如何处理?
1.丢弃一些不能帮助我们正确预测的特征。可以是手工选择保留哪些特征,或者使用一些模型选择的算法来帮忙(例如 PCA)
2.正则化。 保留所有的特征,但是减少参数的大小(magnitude)。
2.代价函数
上面的回归问题中如果我们的模型是:
h
𝜃
(
𝑥
)
=
𝜃
0
+
𝜃
1
𝑥
1
+
𝜃
2
𝑥
2
+
𝜃
3
𝑥
3
+
𝜃
4
𝑥
4
ℎ_𝜃(𝑥) = 𝜃_0 + 𝜃_1𝑥_1 + 𝜃_2𝑥_2 + 𝜃_3𝑥_3 + 𝜃_4𝑥_4
h𝜃(x)=𝜃0+𝜃1x1+𝜃2x2+𝜃3x3+𝜃4x4
我们可以从之前的事例中看出,正是那些高次项导致了过拟合的产生,所以如果我们能让这些高次项的系数接近于 0 的话,我们就能很好的拟合了。
所以我们要做的就是在一定程度上减小这些参数𝜃 的值,这就是正则化的基本方法。
我们决定要减少
𝜃
3
𝜃_3
𝜃3和
𝜃
4
𝜃_4
𝜃4的大小,我们要做的便是修改代价函数,在其中
𝜃
3
𝜃_3
𝜃3和
𝜃
4
𝜃_4
𝜃4设置一点惩罚。
这样做的话,我们在尝试最小化代价时也需要将这个惩罚纳入考虑中,并最终导致选择较小一些的
𝜃
3
𝜃_3
𝜃3和
𝜃
4
𝜃_4
𝜃4。
修改后的代价函数如下:
min
θ
1
2
m
[
∑
i
=
1
m
(
h
θ
(
x
(
i
)
)
−
y
(
i
)
)
2
+
1000
θ
3
2
+
10000
θ
4
2
]
\min_{\theta} \frac{1}{2m} \left[ \sum_{i=1}^{m} \left( h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 + 1000\theta_3^2 + 10000\theta_4^2 \right]
θmin2m1[i=1∑m(hθ(x(i))−y(i))2+1000θ32+10000θ42]
通过这样的代价函数选择出的
𝜃
3
𝜃_3
𝜃3和
𝜃
4
𝜃_4
𝜃4对预测结果的影响就比之前要小许多。假如我们有非常多的特征,我们并不知道其中哪些特征我们要惩罚,我们将对所有的特征进行惩罚,并且让代价函数最优化的软件来选择这些惩罚的程度。这样的结果是得到了一个较为简单的能防止过拟合问题的假设:
J
(
θ
)
=
1
2
m
[
∑
i
=
1
m
(
h
θ
(
x
(
i
)
)
−
y
(
i
)
)
2
+
λ
∑
j
=
1
n
θ
j
2
]
J(\theta) = \frac{1}{2m} \left[ \sum_{i=1}^{m} \left( h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]
J(θ)=2m1[i=1∑m(hθ(x(i))−y(i))2+λj=1∑nθj2]
其中𝜆又称为正则化参数(Regularization Parameter)。
注:根据惯例,我们不对
𝜃
0
𝜃_0
𝜃0进行惩罚。
经过正则化处理的模型与原模型的可能对比如下图所示:
如果选择的正则化参数 λ 过大,则会把所有的参数都最小化了,导致模型变成
h
𝜃
(
𝑥
)
=
𝜃
0
ℎ_𝜃(𝑥) =𝜃_0
h𝜃(x)=𝜃0,也就是上图中红色直线所示的情况,造成欠拟合。
那为什么增加的一项 λ ∑ j = 1 n θ j 2 \lambda \sum_{j=1}^{n} \theta_j^2 λ∑j=1nθj2可以使𝜃的值减小呢?
因为如果我们令 𝜆 的值很大的话,为了使 Cost Function 尽可能的小,所有的 𝜃 的值(不包括𝜃0)都会在一定程度上减小。
但若 λ 的值太大了,那么𝜃(不包括𝜃0)都会趋近于 0,这样我们所得到的只能是一条平行于𝑥轴的直线。
所以对于正则化,我们要取一个合理的 𝜆 的值,这样才能更好的应用正则化。