一、ELMO
ELMO是通过基于RNN来预测词向量的,如下图所示,对于“潮水退了就知道谁没穿裤子”这句话里面的“潮水”这个词,通过正向RNN和逆向RNN都会产生一个词向量,然后把这两个词向量进行加权得到最后的词向量。其中加权的权重参数是从下游任务里面学习到的。
二、BERT
BERT 的训练过程有两种方式,一种是Masked LM,另外一种是预测下一句话的方法。
1. Masked LM
Masked LM是通过随机遮蔽15%的词,然后对这15%的词来进行预测。预测的时候将MASK位置产生的向量通过一个线性多分类器来得到是哪个词。如果两个词填在同一个地方没有违和感,那么这两个词就有相似的embedding。
2. Next Sentence Prediction
这个是通过输入两句话(用SEP分隔),来预测输出这两句话是不是连续的。通过这样的