ELMO、BERT、ERINE、GPT的李宏毅视频学习笔记

一、ELMO

ELMO是通过基于RNN来预测词向量的,如下图所示,对于“潮水退了就知道谁没穿裤子”这句话里面的“潮水”这个词,通过正向RNN和逆向RNN都会产生一个词向量,然后把这两个词向量进行加权得到最后的词向量。其中加权的权重参数是从下游任务里面学习到的。

 

二、BERT

BERT 的训练过程有两种方式,一种是Masked LM,另外一种是预测下一句话的方法。

1. Masked LM

Masked LM是通过随机遮蔽15%的词,然后对这15%的词来进行预测。预测的时候将MASK位置产生的向量通过一个线性多分类器来得到是哪个词。如果两个词填在同一个地方没有违和感,那么这两个词就有相似的embedding。

                          

2. Next Sentence Prediction

这个是通过输入两句话(用SEP分隔),来预测输出这两句话是不是连续的。通过这样的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值