文章目录
动画是使可视化更具吸引力和用户吸引力的好方法。它帮助我们以有意义的方式展示数据可视化。Python 帮助我们使用现有的强大 Python 库创建动画可视化。Matplotlib是一个非常流行的数据可视化库,通常用于数据的图形表示以及使用内置函数的动画。
使用 Matplotlib 创建动画有两种方法:
- 使用 pause() 函数
- 使用 FuncAnimation() 函数
方法一:使用 pause() 函数
在暂停()的matplotlib库的pyplot模块在功能上用于暂停为参数提到间隔秒。考虑下面的示例,我们将使用 matplotlib 创建一个简单的线性图并在其中显示动画:
创建 2 个数组 X 和 Y,并存储从 1 到 100 的值。 使用 plot() 函数绘制 X 和 Y。 以合适的时间间隔添加 pause() 函数 运行程序,你会看到动画。
Python
from matplotlib import pyplot as plt
x = []
y = []
for i in range(100):
x.append(i)
y.append(i)
# 提及 x 和 y 限制以定义其范围
plt.xlim(0, 100)
plt.ylim(0, 100)
# 绘制图形
plt.plot(x, y, color = 'green')
plt.pause(0.01)
plt.show()
输出 :
同样,你也可以使用 pause() 函数在各种绘图中创建动画。
方法二:使用 FuncAnimation() 函数
这个FuncAnimation() 函数不会自己创建动画,而是从我们传递的一系列图形中创建动画。
语法: FuncAnimation(figure, animation_function, frames=None, init_func=None, fargs=None, save_count=None, *, cache_frame_data=True, **kwargs)
现在您可以使用 FuncAnimation 函数制作多种类型的动画:
线性图动画:
在这个例子中,我们将创建一个简单的线性图,它将显示一条线的动画。同样,使用 FuncAnimation,我们可以创建多种类型的动画视觉表示。我们只需要在一个函数中定义我们的动画,然后用合适的参数将它传递给FuncAnimation。
Python
from matplotlib import pyplot as plt
from matplotlib.animation import FuncAnimation
import numpy as np
x = []
y = []
figure, ax = plt.subplots()
# 设置 x 和 y 轴的限制
ax.set_xlim(0, 100)
ax.set_ylim(0, 12)
# 绘制单个图形
line, = ax.plot(0, 0)
def animation_function(i):
x.append(i * 15)
y.append(i)
line.set_xdata(x)
line.set_ydata(y)
return line,
animation = FuncAnimation(figure,
func = animation_function,
frames = np.arange(0