新手教程,使用Langchain-Chatchat构建自己的专属GPT

有人问我怎么构建自己的 gpt?

正好这里有个开源项目,可以自己部署,构建自己的专属 gpt。

自己部署的最大好处就是没有数据安全泄露问题,毕竟数据隐私这一块还是相当重要的。

这个项目是:Langchain-Chatchat

在这里插入图片描述

这个项目目前已经有 27k+ starts, 129 位贡献者,虽然比不上 原生的 langchain 的框架,但已经想当不错了。

Langchain-Chatchat 是基于 Langchain 与大语言模型的本地知识库问答。

可以实现与LLM对话知识库问答文件对话搜索引擎问答自定义Agent问答等功能,可以满足大部分的需求。

在这里插入图片描述

这个项目好是好,但是初次部署存在一些坑,本文教你一步步配置,启动 Langchain-Chatchat,可以收藏,留作后用。

无论你是云端,还是本机,都可以,只不过有些环境不同。

这里以AutoDL云端服务器为例,镜像可采用 https://www.codewithgpu.com/i/chatchat-space/Langchain-Chatchat/Langchain-Chatchat

模型采用Qwen/Qwen-1_8B-Chat,向量检索模型采用bge-large-zh-v1.5

本文的目的是先跑起来,至于里面向量检索模型是用什么?还能用什么大模型,还有什么更加好玩的地方?是否能自己修改开发,后面再继续讨论。

预备下载

1、下载项目

https://github.com/chatchat-space/Langchain-Chatchat

在这里插入图片描述

无论是什么环境,采用 git clone 也好,还是直接下载压缩包也好,把 Langchain-Chatchat 下载到服务器就行。

AutoDL 我采用下载 ZIP 压缩包到本地,然后在上传的方式。

2、下载 LLM 模型

在这里插入图片描述

之前写过怎么能够快速的下载模型,可以看之前的文章。

这里采用 python 脚本 snapshot 的下载方式。

(1) export HF_ENDPOINT=https://hf-mirror.com

(2)

from huggingface_hub import snapshot_download

snapshot_download(repo_id='Qwen/Qwen-1_8B-Chat',
                  repo_type='model',
                  local_dir='./Qwen/Qwen-1_8B-Chat',
                  resume_download=True)

3、下载向量模型

采用模型是 bge-large-zh-v1.5

在这里插入图片描述

(1) export HF_ENDPOINT=https://hf-mirror.com

(2)

from huggingface_hub import snapshot_download

snapshot_download(repo_id='BAAI/bge-large-zh-v1.5',
                  repo_type='model',
                  local_dir='./BAAI/bge-large-zh-v1.5',
                  resume_download=True)

下载上面的项目和模型之后,记住模型的 local_dir 位置,到时候要填写其绝对路径,切记,相对路径也可以,只要你能搞清楚路径的存储都没问题,绝对路径相对大多数人来说,简单一些。

项目配置

上面已经下载了项目,进到项目之后,开始配置。

1、先配置 model 所需要的

先执行 python copy_config_example.py

执行之后,进入到 cd configs/

这里要先修改 model_config.py

找到 EMBEDDING_MODELLLM_MODELS两个变量,修改为下面的值。

多说一嘴,LLM_MODELS可以是多个,默认是第一个,但是要写多个的话,记得模型路径都得配置好。

# 选用的 Embedding 名称
EMBEDDING_MODEL = "bge-large-zh-v1.5"

LLM_MODELS = ["Qwen-1_8B-Chat"]

在这里插入图片描述

第二步,修改下面的两处为模型的绝对路径,很重要。

在这里插入图片描述

上面的配置之后,模型这部分就告一段落。

2、配置启动服务

配置 server_config.py

这里是 autoDL 的一个坑,端口 👌 号要修改和 autodl 的一致。

在这里插入图片描述

autodl 的在这里看, 自定义服务

在这里插入图片描述

在这里插入图片描述

第二个要修改的地方。

“Qwen-1_8B-Chat” 的 device 改为 “cuda”

在这里插入图片描述

以上 修改model_config.pyserver_config.py 之后,配置就算 ok 了。

数据库初始化

回到项目目录,执行下面命令,正常的情况下,1-2 分钟就 ok 了。

python init_database.py --recreate-vs

img

扩展一下,这里加载的是 Langchain-Chatchat/knowledge_base/samples/content里面的文档,构建的向量索引存储在 Langchain-Chatchat/knowledge_base/samples/vector_store/bge-large-zh-v1.5下面。

在这里插入图片描述

以上所有的初始化工作都已经结束,可以启动服务了。

启动服务

autoDL 启动这个服务之前,要开启自定义服务。

在这里插入图片描述

在这里插入图片描述

然后执行命令:python startup.py -a

不出意外的话,启动成功之后就出现下面的URL

在这里插入图片描述

访问 WebUI 界面:http://localhost:6006/

在这里插入图片描述

初次使用

1、LLM 对话

这里默认加载的是你刚才配置的Qwen-1_8B-Chat大模型。

可以直接对话聊天。

在这里插入图片描述

2、知识库问答

在这里插入图片描述

这里要先进行知识库管理,上传文件,并添加到知识库,这里能够看到是采用 faiss构建的向量索引。

在这里插入图片描述

最后可以对知识库管理,修改之后保存更改就行,还是很友好的 UI 界面。

在这里插入图片描述

测试一下效果。

在这里插入图片描述

3、文件对话

还有文件对话功能,上传你的文件,类似之前的 chatpdf 的功能,还有现在的 kimi 一样的功能。

在这里插入图片描述

那么请问文件对话和知识库问答有什么区别呢?

4、搜索引擎

除了上面的功能之外,还可以借助搜索引擎的功能完成搜索。

在这里插入图片描述

这个需要设置搜索引擎的 key。

以上就是用 Langchain-Chatchat 构建自己的专属 gpt,新手启动服务的配置,这样应该可以了吧,有问题群里交流。

总结一下

langchain 这个框架包括衍生出来的 Langchain-Chatchat 还是很值得大家关注的,对于有私有数据,不方便上传到 gpt 的,可以自己搭建这种功能的服务。

另外,langchain 这个框架的发展速度是想当惊人的,现在已经有 83k 的 start,也就是 8 万 3 千多人,项目贡献者已经超多了 2600 人,是值得大家关注学习的。

在这里插入图片描述

如何学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

全套AGI大模型学习大纲+路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

img

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值