私有化部署DeepSeek + RAGFlow,技术小白也能轻松学会

这期内容分享下在我们个人本地电脑私有化部署 DeepSeek R1 + RAGFlow,也想观察下在没有GPU的机器上跑起来体验如何?

这期分享全程操作的干货内容,言简意赅,不要怕学不会,现在部署大模型已经很简单了。照着我说的一步步做,一定能成功!

img

① 我本地的环境

AMD Ryzen 5 5600G 3.90 GHz
16.0 GB (15.4 GB 可用)
1TB固态
没有独显(哈哈)
Windows 11 专业版
本地虚拟机
CentOS Linux release 7.9.2009 (Core)
安装好 Docker,这个不会可以问AI,Linux几行命令就搞定

以上环境相信大部分朋友都具备。

② 下载和安装ollama

# 下载地址
https://ollama.com/download/windows

# 配置下环境变量
# ollama 默认只允许本地访问,不配置的话我们虚拟机不能和本地ollama连接
OLLAMA_HOST 0.0.0.0:11434
# 模型下载位置,推荐配置下
OLLAMA_MODELS D://models/xxx

# 傻瓜式下一步安装,安装后最好重启下电脑

③ 下载 DeepSeek 模型

# 这里推荐下载7b,大概4G,要一会儿
ollama run deepseek-r1:7b
# 如果就是学习下步骤,也可以下1.5b,快
ollama run deepseek-r1:1.5b
# 我2模型个都下了,下的过程中,可能到最后会很慢
# 不要怕,直接Ctrl + C结束
# 再执行下载,他有断点续传,再下就发现很快

# 跑起来就直接进对话指令了,类似如下
C:\Users\sailen>ollama run deepseek-r1:7b
>>> Send a message (/? for help)
# 可以输入点内容测试下速度,例如:介绍下你自己
# 由于我没GPU,7b回答的时候有点慢,但勉强能推理
# 1.5b的速度很快了,但是问了几个问题
# 说实话很拉胯,不能用,只剩快,哈哈
>>> 介绍下你自己
<think>
您好!我是由中国的深度求索(DeepSeek)公司开发的智能助手DeepSeek-R1。如您有任何任何问题,我会尽我所能为您提供帮助。

</think>

您好!我是由中国的深度求索(DeepSeek)公司开发的智能助手DeepSeek-R1。如您有任何任何问题,我会尽我所能为您提供帮助。

# 输入 /bye,可以退出 对话
# 再输入 ollama list 查看本地下载的模型
>>> /bye
C:\Users\sailen>ollama list
NAME                ID              SIZE      MODIFIED
deepseek-r1:7b      0a8c26691023    4.7 GB    4 days ago
deepseek-r1:1.5b    a42b25d8c10a    1.1 GB    4 days ago

# 此时,浏览器里用你的内网IP访问下11434
http://192.168.31.116:11434/
# 看看 显示 Ollama is running 即可

img

④ 下载、部署RagFlow

远程连接虚拟机,准备下载RagFlow

# 先下下ragflow源码
git clone https://github.com/infiniflow/ragflow.git

# 修改下环境变量文件
# 目的:下载RagFlow完整版,含Embedding模型
# 不然你本地还需要部署一个Embedding模型
cd ragflow
vi docker/.env
# 注释轻量版本
# RAGFLOW_IMAGE=infiniflow/ragflow:v0.16.0-slim
# 打开完整版本
RAGFLOW_IMAGE=infiniflow/ragflow:v0.16.0

# cd ragflow
# 准备跑吧,拉镜像需要点时间哈,完整版9多G
docker compose -f docker/docker-compose.yml up -d
# 最好配置下Docker国内代理
vi /etc/docker/daemon.json
# 配置内容:
{
  "registry-mirrors": ["https://docker.1ms.run"]
}

# 下载过程中可能提示连接失败,多重新尝试几次即可
# 另外,我遇到一个问题,跑完后,一个es容器没下载成功
# 一开始不清楚原因,用docker logs 看了下ragflow-server容器的日志
# 发现一直在连 es,无法连接
# 找了下解决方案:
https://github.com/infiniflow/ragflow/issues/4038
# 还是一个open状态的问题,看最后那个大佬的内容
I was able to solve it by moving in the folder /docker and doing docker compose down then docker compose up and elastic search installed itself
# 于是,执行下
docker compose down
docker compose up
# 嘿嘿,就检测到es的容器没下载成功,然后一顿下载
# 完事后,再重启下ragflow-server容器
# 观察下日志,好了
# 浏览器访问下试试
http://192.168.31.101/

img

⑤注册账号、登录

没啥好说的,输入邮箱,名称,密码就可以了

⑥ 配置模型提供商

我英文水平一般,先切换到中文,哈哈

点击头像,找到左侧模型提供商

找到ollama,点击添加模型

img

参考我这图上面配置就行,一看就懂哈。

点击确认,可能要转一下下,然后就看到列表上有Ollama了

⑦ 系统模型设置

再点击系统模型设置,参考我这样配置就行

img

⑧ 创建知识库

输入名称,选择语言,选择嵌入模型

解析方法没啥特殊的,就选General就行

其它的不懂就默认,先别管

img

然后新增一个你本地的文档

传上来后,点击下执行下解析,可能需要几分钟

解析状态显示 成功 就好了

由于没有GPU加持,向量化过程全靠CPU算

我这个文档 28M,12核CPU全部接近 跑满状态,大概跑了5分钟

img

⑨ 新建助理,创建聊天

在助理设置里,就填写个名字,愿意的话就改下开场白,最重要吧下面的知识库选为你自己刚刚刚刚创建的

切换到提示引擎们可以按你的需求改下提示词其它也不用动

切换到模型设置,选择 ollama 图标里的 DeepSeek 7b就好了

img

然后就愉快地聊天吧!

img

看完后是不是觉得简单吧?RagFlow 与 Docker 把很多技术细节给你屏蔽了,不用关心需要部署数据库、Redis、ES、minio啥啥的,模型相关的一些参数配置也都是给你默认配置了,上手很容易,缩一缩,这都2025年了,搭建一个完全私有化的RAG系统也没那么难。

实际上RAGFlow有很多细节支持你配置和自定义,需要你花点时间去测试和研究。

还提供了丰富的API,供你业务系统调用,多爽~~~

这些内容后面有空,我会继续写几篇文章逐一介绍,敬请关注!


实际运行情况

现实很残酷,你知道我得到上面那个推理结果代价有多大吧?

内存99%,磁盘100%,CPU从持续一段时间100%,到后面稳在35%左右

然后,大概每隔1分钟,响应2句话,等啊等

我开的其它应用有的就报错了,然后闪退,然后就是鼠标键盘都不好使了

大概半小时,结果出来了,但系统已经瘫痪了

本来想截屏的,卡住没反应了

最终,想按各种快捷键杀进程都没反应,强制按主机电源键关机重启……

反正是玩一下嘛,还是挺好玩的哈哈,感兴趣可以看下我的视频号里的内容

智享视界8

我重启后不敢用 7b 模型了,改用了1.5b 进行推理,不会还会死掉

速度快了不少,但结果也不是太准确了……

好了,大家玩的时候,还是先玩下1.5b吧,玩 7b+ 的有 GPU 可以放心玩哈!!!

都看到这里了,点个关注吧,我后面还会细讲 RagFlow 产品相关的深入使用哦!

如何零基础入门 / 学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

全套AGI大模型学习大纲+路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

read-normal-img

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

img

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

### 如何在本地环境中部署 DeepSeekRAGFlow #### 配置步骤概述 为了实现在本地环境中的高效运行,通常会选择使用 Docker 来简化安装过程。通过容器化技术,可以轻松管理应用程序及其依赖关系,从而减少不同操作系统之间的兼容性问题。 #### 安装依赖项 由于 RAGFlow 依赖于多个第三方服务组件,如 Elasticsearch、MySQL 及 Redis 等数据库管理系统和服务中间件,因此推荐采用 Docker Compose 文件来定义和启动这些关联的服务实例[^3]。 ```yaml version: '3' services: elasticsearch: image: docker.elastic.co/elasticsearch/elasticsearch:7.10.2 ports: - "9200:9200" environment: discovery.type: single-node mysql: image: mysql:8.0 restart: always environment: MYSQL_ROOT_PASSWORD: example redis: image: "redis:alpine" ``` 此配置文件仅作为示例展示部分核心服务;实际应用时需根据官方文档调整版本号及其他参数设置以满足具体项目需求。 #### 实现本地部署 对于想要将 DeepSeek 或者其他大型语言模型部署至本地的情况来说,这样做不仅提供了更为灵活多变的应用场景支持,同时也增强了数据安全性保障措施[^1]。 针对希望利用现有硬件设施完成私有化知识库建设的需求方而言,则可以通过组合 DeepSeek 加上 RAGFlow 的方式达成目标。这种方式特别适用于那些需要全天候稳定运作、频繁访问内部资料或是涉及高度机密信息处理的工作场合[^2]。 #### 常见问题及解决方案 - **Q:** 如果遇到某些特定软件包无法正常下载怎么办? **A:** 尝试更换镜像源地址或者手动指定离线安装包路径来进行修复尝试。 - **Q:** 当面对复杂网络环境下难以获取最新更新的问题时应该怎样操作? **A:** 提前准备好所需的所有资源文件,并按照说明文档指引逐步实施离线模式下的初始化工作流程。 - **Q:** 对于初次使用者来说,最常碰到的技术难题有哪些方面呢? **A:** 主要集中在理解各个模块间相互作用原理以及掌握必要的命令行工具运用技巧这两点之上。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值