Dify案例分享-Qwen3 vs 传统合同审查,这场对决谁能胜出?

1.前言

Qwen3是阿里巴巴于2025年4月29日发布的一款开源混合推理模型,其特点和性能在多个方面都取得了显著突破.一张图给大家看懂Qwen3

在这里插入图片描述

另外dify 在2025年4月28日也升级到1.3.1 版本了。具体升级了哪些东西我们看一张图

在这里插入图片描述

今天就带大家使用本地ollama 搭建qwen3 模型结合dify 1.3.1 版本实现合同评审工作流。 工作流截图如下:

在这里插入图片描述

2.ollama 安装和模型下载

ollama安装

ollama 在官方网站上也第一时间实现了qwen3模型是的适配,官方地址ollama.com/

在这里插入图片描述

这里下载最新版本ollama 我本地电脑使用windows 所以我下载windonw版本

在这里插入图片描述

ollama 安装比较简单,点击安装就可以了。 安装完成后,我们在cmd命令窗口查看

在这里插入图片描述

看到上面显示ollama version 说明安装成功。接下来我们下载qwen3

ollama.com/library/qwe…

在这里插入图片描述

在模型列表中我们选择qwen3,我电脑上只有4060显卡 支持的8GB显存,所以我先现在8B版本的模型(4B量化模型)

qwen3 模型下载

体验AI代码助手代码解读复制代码ollama  pull qwen3:8b

输入上面命令后 系统会自动下载模型,大概几分钟完成模型的下载。我们可以输入如下命令查看模型列表

体验AI代码助手代码解读复制代码ollama list 

在这里插入图片描述

模型启动和运行

arduino体验AI代码助手代码解读复制代码ollama run qwen3:8b

在这里插入图片描述

默认开启了think 模式

我们简单测试一下,我们给出下面的问题

体验AI代码助手代码解读复制代码阿里开源的模型有哪些?从2023年开始到现在时间点,请详细展开

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

回答的还不错,速度也还可以。

3 .dify 上配置ollama版qwen模型

关于dify 的安装我们这里就不做详细展开,下面给大家贴一下安装后的截图。

在这里插入图片描述

在这里插入图片描述

我们使用Docker Desktop 实现上述安装。

dify配置ollama

浏览器输入地址http://localhost

在这里插入图片描述

我们点击右上角设置,点击模型供应商

在这里插入图片描述

这里我们选择ollama 安装

在这里插入图片描述

安装完成后我们在待分配模型中会出现Ollama

在这里插入图片描述

我们填下如下内容

模型名称:qwen3:30b-a3b

基础 URL:172.35.xx.xx:11434

模型类型:对话

模型上下文长度:32768

最大 token 上限:32768

在这里插入图片描述

其中模型名称是ollama对外提供的模型,基础 URL 是局域网地址(建议不要填写localhsot),模型上下文长度和最大 token 上限 这个是模型支持的上下文的能力 具体要看模型支持,简单看上面的截图中提到的,简单粗暴我们就填32768

在这里插入图片描述

dify 验证qwen3

我们创建一个聊天助手。 模型选择qwen3

在这里插入图片描述

下面我们测试验证一下。

在这里插入图片描述

我们知道这次qwen3 支持 思考模式和非思考模式,可以使用参数来控制。

bash体验AI代码助手代码解读复制代码</no_thinck> 给我写一个最新的模型排名情况?

在这里插入图片描述

在这里插入图片描述

呵呵把自己排名放到前面了。

上面我们基本把qwen3在 dify 平台上跑起来了。下面我们重点介绍一下合同评审在这个qwen3模型上的表现。

4.工作流搭建

这个工作流用到了markdown转换器工具,我们按照上面的操作把工具安装好。

在这里插入图片描述

关于工作流的配置我们这次就不带大家一起来一步一步配置了。我们可以在我们开源的项目中导入即可。文章后面会给大家详细地址

在这里插入图片描述

在这里插入图片描述

开始节点中我们这里有4个参数。

1、请上传需要审查的文本。

2、请选择合同审查主体

3、工作领域

4、合同审查要点

在这里插入图片描述

合同审查llm 系统提示词

shell体验AI代码助手代码解读复制代码 ## Role: 
律师({{#1740449748004.workfield#}})
 
## Profile:
- language: 中文
- description: 你是一个律师,以{{#1740449748004.Apart#}}利益最大化为原则,对{{#context#}}进行审查分析, 给出评分和改进建议,帮助用户改进和完善合同。
 
## Goals:
- 对输入的合同文本审查分析后,指出合同的问题和存在的风险
- 对于改进和完善合同,给出建议
- 根据建议,修改具体的条款
- 给提供专业的法律服务

 
## Constrains:
- 要依据正在适用的法律,不能引用废止的法律条文
- 合同条款约定应当符合最新法律法规及相关政策要求
- 专用名称地点应当准确
- 要结合建筑工程的行业,不能随意
- 要结合{{#1740449748004.Apart#}}的要求,站在{{#1740449748004.Apart#}}的立场
- 要做出有利于{{#1740449748004.Apart#}}的条款
- 对于{{#1740449748004.Apart#}}不利的条款,要及时指出
- 对于显著偏向于{{#1740449748004.Apart#}}的不公平条款,需要与对方充分协商
 
## Skills:
- 熟悉中国的法律,并能熟练引用法律
- 法律专业技能非常强,熟悉诉讼的程序和流程
- 经验非常丰富,擅长处理各种纠纷
- 对于建筑行业非常了解
- 团队配合能力强,组织团队为{{#1740449748004.upload#}}服务
- 熟练使用各种软件,效率非常高
 
## attention
{{#1740449748004.attention#}}

## example
该份合同存在的问题:
-1.
-2.
对客户不利的条款:
-1. { };解释原因:
-2. { };解释原因:
 
修改的建议:
-1.
-2.
-3.
-4.
N
 
 
修改的具体条款:
-将“xxx条款”修改为“ ”
-将“xxx条款”修改为“ ”
-将“xxx条款”修改为“ ”
 
 
## output format:
该份合同存在的问题:
-1.
-2.
对客户不利的条款:
-1. { };解释原因:
-2. { };解释原因:
 
修改的建议:
-1.
-2.
-3.
-4.
N
 
 
修改的具体条款:
-将“xxx条款”修改为“ ”
-将“xxx条款”修改为“ ”
-将“xxx条款”修改为“ ”

该工作流主要是2个LLM语言模型和1个文档提取器,另外2个markdown转PDF和转WORD插件工具组成。

5.工作流验证及测试

我们上传需要测试的合同文档。已经关键信息

在这里插入图片描述

测试结果

在这里插入图片描述

在这里插入图片描述

同时生成的2份PDF和word的修改意见。

在这里插入图片描述

我们对比一下之前其他模型的测试效果。

我们之前的工作流用的是2个模型合同审查要点生成 使用的硅基流动提供的glm4-32b-0414模型,合同审查LLM是火山引擎提供的deepseek-v3模型

在这里插入图片描述

对比一下最终生成的风险点word

在这里插入图片描述

左边是基于deepseek-v3模型生成的审查风险报告,右边是qwen3-30b-a3b (ollama部署),能看的出来右边的风险点更加详细,审查的内容提到了《信息安全技术 网络安全等级保护基本要求》这个具有法律依据的文献材料,这样让这个合同审查更加具有说服力。当然本次测试是没有基于第三方合同审查内容知识库(RAG)部分,完全是看模型本身对合同风险点的能力输出。输出的时候我没有调整</no_think> 参数所以执行时间比较长。总体来说能力还是不错的,大家也可以自行去测试。

相关资料和文档可以看我开源的项目 github.com/wwwzhouhui/…

6.总结:

今天主要带大家了解并实现了基于本地 ollama 搭建 Qwen3 模型结合 dify 1.3.1 版本实现合同评审工作流的方案。通过对比之前使用其他模型的测试效果,发现基于 Qwen3-30b-a3b(ollama 部署)生成的合同审查风险报告风险点更加详细,且审查内容提及具有法律依据的文献材料,让合同审查更具说服力。由于时间关系我们本次合同的准备材料以及实验测试的qwen3测试环境还不具备更准确和权威性测试,只是针对本次合同评审使用到了qwen3模型,此方案属于比较实用且具有一定创新性的方案,能够有效提升合同审查工作的效率和质量。感兴趣的小伙伴可以按照本文步骤去尝试。今天的分享就到这里结束了,我们下一篇文章见。

如何零基础入门 / 学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

全套AGI大模型学习大纲+路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

read-normal-img

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

img

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值