10个常用的可以进行图像处理的Python库的介绍,可能有些你还没用过,可以试试看!
介绍
我们这个世界充满了数据,而图像是这些数据的重要组成部分。然而,要想使用这些图像,需要对它们进行处理。因此,图像处理是分析和处理数字图像的必要的过程,其主要目的是提高图像质量或从中提取一些信息,然后加以利用。
图像处理中常见的任务包括图像显示、裁剪、翻转、旋转等基本操作、图像分割、分类和特征提取、图像恢复和图像识别。Python成为这种图像处理任务的合适选择。这是因为它作为一种科学编程语言越来越受欢迎,而且在其生态系统中有许多最先进的图像处理工具可以免费使用。
我们来看一些用于图像处理任务的常用Python库。
1.scikit Image
scikit-image是一个开源的Python包,可以使用 numpy
数组。它实现了用于研究、教育和工业应用的算法和实用程序。它是一个相当简单和直接的库,即使对于Python生态系统的新手也是如此。这些代码是由活跃的志愿者社区编写的,具有高质量和同行评审的特性。
资源
它已经通过大量的例子和实际的用例很好地文档化了。阅读文档:(http://scikit-image.org/docs/stable/user_guide.html)。
使用
包被导入为 skimage
,大多数函数都在子模块中可以找到。skimage的一些例子包括:
-
图像滤波
-
import matplotlib.pyplot as plt
-
%matplotlib inline
-
from skimage import data,filters
-
image = data.coins()
-
# ... or any other NumPy array!
-
edges = filters.sobel(image)
-
plt.imshow(edges, cmap='gray')
-
使用match template函数进行模板匹配