大模型(如DeepSeek、Qwen等)参数规模动辄数百亿,全精度(FP32)存储和推理会占用大量显存且速度慢。而模型量化技术通过将浮点数压缩为低精度整数,不仅能让大模型“瘦身”至1/4甚至更小体积,还能显著提升推理效率。例如,175B参数的模型用FP32需700GB显存,而量化到INT4仅需约10GB。
一、概念解读
Quantization(模型量化)到底是个啥?模型量化是一种参数压缩与加速技术,其核心逻辑是将模型中的高精度浮点数(如32位浮点数 FP32)转换为低精度整数(如8位整数 INT8 或4位整数 INT4),从而减少存储空间、提升推理速度并降低硬件能耗。
-
FP32(浮点数):如同用科学计算器处理小数运算,精度高但计算慢、耗电多。
-
INT8(整数):如同用算盘处理整数运算,速度快、能耗低,但需通过“单位换算”保证结果接近。
模型量化的本质是通过数学映射,在精度损失可控的前提下,将模型参数从“高精度”转换为“低精度”,实现性能与效率的平衡。
1. 确定量化范围
找到参数或激活值的最小值(min)和最大值(max)。
例如:权重参数范围:min=-1.2
, max=0.8;激活值范围:
min=0.1
, max=5.6。
2. 计算缩放因子(Scale)与零点(Zero Point)
(1)缩放因子:scale = (max - min) / (2^n - 1)(
n
为量化位数,如 INT8
时 n=8
,2^8-1=255
)
(2)零点:zero_point = round(-min / scale)(确保浮点数
0
映射到整数 0
,避免负数溢出)
例如:若 min=-1.2
, max=0.8
,INT8
量化:scale = (0.8 - (-1.2)) / 255≈0.00784,zero_point = round(-(-1.2) / 0.00784) ≈ 153
3. 量化与反量化公式
(1)量化:q = round(x / scale) + zero_point
(将浮点数 x
映射为整数 q
)
(2)反量化:x' = (q - zero_point) * scale
(将整数 q
还原为浮点数 x'
)
为什么需要Quantization(模型量化)?模型量化通过压缩内存占用和提升计算带宽效率,破解硬件资源受限与实时性需求矛盾。
-
存储维度:
INT8
压缩4倍,INT4
压缩8倍,实现“大象变蚂蚁”; -
带宽维度:内存访问量减少75%,推理速度提升2-4倍,打通“高速专线”。
二、技术实现
Quantization(模型量化)如何进行技术实现?模型量化主要通过训练后量化(Post-Training Quantization,PTQ)和量化感知训练(Quantization Aware Training,QAT)两种方式实现。
1. PTQ(训练后量化)技术实现
PTQ在模型训练完成后,使用少量校准数据来估计权重和激活值的动态范围,进而确定量化参数(如缩放因子和零点),无需重新训练模型。实现简单,无需重新训练模型,能够显著减少计算开销和内存占用,适用于大多数场景。
2. QAT(量化感知训练)技术实现
QAT在模型训练过程中就考虑量化效果,通过插入伪量化节点来模拟量化操作,模型在训练时即考虑到了量化误差,并通过反向传播算法调整模型的权重,从而使模型在量化后的推理阶段能够保持较高的精度。由于在训练过程中考虑了量化误差,QAT通常能保证量化后的模型精度接近未量化模型,适用于对精度要求较高的应用场景。
PyTorch如何实现Quantization(模型量化)?PyTorch作为主流的深度学习框架,提供了完整的量化工具链,支持训练后量化(PTQ)、量化感知训练(QAT)和动态量化等多种方式。
1. 动态量化(Dynamic PTQ)
import torch
from torch.quantization import quantize_dynamic
# 加载预训练模型
model = torch.load('model.pth')
model.eval()
# 动态量化(量化Linear和LSTM层)
quantized_model = quantize_dynamic(
model,
{torch.nn.Linear, torch.nn.LSTM}, # 指定量化层类型
dtype=torch.qint8
)
2. 静态量化(Static PTQ)
from torch.quantization import prepare, convert
# 准备校准数据集
def calibrate(model, data_loader):
model.eval()
with torch.no_grad():
for inputs in data_loader:
model(inputs)
# 配置量化参数
model.qconfig = torch.quantization.get_default_qconfig('fbgemm')
model_prepared = prepare(model) # 插入Observer节点
calibrate(model_prepared, data_loader) # 校准激活值范围
quantized_model = convert(model_prepared) # 转换为量化模型
3. 量化感知训练(QAT)
from torch.quantization import prepare_qat, FakeQuantize
# 定义QAT模型
model.qconfig = torch.quantization.get_default_qat_qconfig('fbgemm')
model_prepared = prepare_qat(model) # 插入伪量化节点
# 训练阶段(模拟量化误差)
optimizer = torch.optim.SGD(model_prepared.parameters(), lr=0.01)
for inputs, labels in train_loader:
outputs = model_prepared(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 转换至最终量化模型
quantized_model = convert(model_prepared)
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓