大模型入门指南 - Quantization:小白也能看懂的“模型量化”全解析

大模型(如DeepSeek、Qwen等)参数规模动辄数百亿,全精度(FP32)存储和推理会占用大量显存且速度慢。而模型量化技术通过将浮点数压缩为低精度整数,不仅能让大模型“瘦身”至1/4甚至更小体积,还能显著提升推理效率。例如,175B参数的模型用FP32需700GB显存,而量化到INT4仅需约10GB。

A Visual Guide to Quantization - by Maarten Grootendorst

一、概念解读

Quantization(模型量化)到底是个啥?模型量化是一种参数压缩与加速技术,其核心逻辑是将模型中的高精度浮点数(如32位浮点数 FP32)转换为低精度整数(如8位整数 INT8 或4位整数 INT4),从而减少存储空间、提升推理速度并降低硬件能耗。

  • FP32(浮点数):如同用科学计算器处理小数运算,精度高但计算慢、耗电多。

  • INT8(整数):如同用算盘处理整数运算,速度快、能耗低,但需通过“单位换算”保证结果接近。

Understanding Model Quantization in Large Language Models | DigitalOcean

模型量化的本质是通过数学映射,在精度损失可控的前提下,将模型参数从“高精度”转换为“低精度”,实现性能与效率的平衡

1. 确定量化范围

找到参数或激活值的最小值(min)和最大值(max)。

例如:权重参数范围:min=-1.2max=0.8;激活值范围:min=0.1max=5.6。

2. 计算缩放因子(Scale)与零点(Zero Point)

(1)缩放因子:scale = (max - min) / (2^n - 1)(n为量化位数,如 INT8 时 n=82^8-1=255

(2)零点:zero_point = round(-min / scale)(确保浮点数 0 映射到整数 0,避免负数溢出)

例如:若 min=-1.2max=0.8INT8 量化:scale = (0.8 - (-1.2)) / 255≈0.00784,zero_point = round(-(-1.2) / 0.00784) ≈ 153

3. 量化与反量化公式

Zero-point quantization : How do we get those formulas? | by Luis Antonio  Vasquez | Medium

(1)量化:q = round(x / scale) + zero_point(将浮点数 x 映射为整数 q

(2)反量化:x' = (q - zero_point) * scale(将整数 q 还原为浮点数 x'

A Visual Guide to Quantization - by Maarten Grootendorst

为什么需要Quantization(模型量化)?模型量化通过压缩内存占用和提升计算带宽效率,破解硬件资源受限与实时性需求矛盾。

  • 存储维度:INT8压缩4倍,INT4压缩8倍,实现“大象变蚂蚁”;

  • 带宽维度:内存访问量减少75%,推理速度提升2-4倍,打通“高速专线”。

    LLM Series - Quantization Overview | by Abonia Sojasingarayar | Medium

    二、技术实现

    Quantization(模型量化)如何进行技术实现?模型量化主要通过训练后量化(Post-Training Quantization,PTQ)和量化感知训练(Quantization Aware Training,QAT)两种方式实现。

    图片

    1. PTQ(训练后量化)技术实现

    PTQ在模型训练完成后,使用少量校准数据来估计权重和激活值的动态范围,进而确定量化参数(如缩放因子和零点),无需重新训练模型。实现简单,无需重新训练模型,能够显著减少计算开销和内存占用,适用于大多数场景。

    2. QAT(量化感知训练)技术实现

    QAT在模型训练过程中就考虑量化效果,通过插入伪量化节点来模拟量化操作,模型在训练时即考虑到了量化误差,并通过反向传播算法调整模型的权重,从而使模型在量化后的推理阶段能够保持较高的精度。由于在训练过程中考虑了量化误差,QAT通常能保证量化后的模型精度接近未量化模型,适用于对精度要求较高的应用场景。

    Neural Network Model quantization on Mobile - AI blog - Arm Community blogs  - Arm Community

    PyTorch如何实现Quantization(模型量化)?PyTorch作为主流的深度学习框架,提供了完整的量化工具链,支持训练后量化(PTQ)、量化感知训练(QAT)和动态量化等多种方式。

    1. 动态量化(Dynamic PTQ)

    import torchfrom torch.quantization import quantize_dynamic# 加载预训练模型model = torch.load('model.pth')model.eval()# 动态量化(量化Linear和LSTM层)quantized_model = quantize_dynamic(    model,     {torch.nn.Linear, torch.nn.LSTM},  # 指定量化层类型    dtype=torch.qint8)

    2. 静态量化(Static PTQ)​​​​​​​

    from torch.quantization import prepare, convert# 准备校准数据集def calibrate(model, data_loader):    model.eval()    with torch.no_grad():        for inputs in data_loader:            model(inputs)# 配置量化参数model.qconfig = torch.quantization.get_default_qconfig('fbgemm')model_prepared = prepare(model)          # 插入Observer节点calibrate(model_prepared, data_loader)  # 校准激活值范围quantized_model = convert(model_prepared)  # 转换为量化模型

    3. 量化感知训练(QAT)​​​​​​​

    from torch.quantization import prepare_qat, FakeQuantize# 定义QAT模型model.qconfig = torch.quantization.get_default_qat_qconfig('fbgemm')model_prepared = prepare_qat(model)     # 插入伪量化节点# 训练阶段(模拟量化误差)optimizer = torch.optim.SGD(model_prepared.parameters(), lr=0.01)for inputs, labels in train_loader:    outputs = model_prepared(inputs)    loss = criterion(outputs, labels)    loss.backward()    optimizer.step()# 转换至最终量化模型quantized_model = convert(model_prepared)

     如何系统的去学习大模型LLM ?

    大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

    事实上,抢你饭碗的不是AI,而是会利用AI的人。

    科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

    与其焦虑……

    不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

    但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

    基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

    在这个版本当中:

    第一您不需要具备任何算法和数学的基础
    第二不要求准备高配置的电脑
    第三不必懂Python等任何编程语言

    您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

    一、LLM大模型经典书籍

    AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

    在这里插入图片描述

    二、640套LLM大模型报告合集

    这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
    在这里插入图片描述

    三、LLM大模型系列视频教程

    在这里插入图片描述

    四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

    在这里插入图片描述

    五、AI产品经理大模型教程

    在这里插入图片描述

    LLM大模型学习路线 

    阶段1:AI大模型时代的基础理解

    • 目标:了解AI大模型的基本概念、发展历程和核心原理。

    • 内容

      • L1.1 人工智能简述与大模型起源
      • L1.2 大模型与通用人工智能
      • L1.3 GPT模型的发展历程
      • L1.4 模型工程
      • L1.4.1 知识大模型
      • L1.4.2 生产大模型
      • L1.4.3 模型工程方法论
      • L1.4.4 模型工程实践
      • L1.5 GPT应用案例

    阶段2:AI大模型API应用开发工程

    • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

    • 内容

      • L2.1 API接口
      • L2.1.1 OpenAI API接口
      • L2.1.2 Python接口接入
      • L2.1.3 BOT工具类框架
      • L2.1.4 代码示例
      • L2.2 Prompt框架
      • L2.3 流水线工程
      • L2.4 总结与展望

    阶段3:AI大模型应用架构实践

    • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

    • 内容

      • L3.1 Agent模型框架
      • L3.2 MetaGPT
      • L3.3 ChatGLM
      • L3.4 LLAMA
      • L3.5 其他大模型介绍

    阶段4:AI大模型私有化部署

    • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

    • 内容

      • L4.1 模型私有化部署概述
      • L4.2 模型私有化部署的关键技术
      • L4.3 模型私有化部署的实施步骤
      • L4.4 模型私有化部署的应用场景

    这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

     

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值