该问题归类到Transformer架构问题集——前馈网络——参数高效设计。请参考LLM数学推导——Transformer架构问题集。
1. 引言
在大语言模型(LLM)不断追求高效与轻量化的进程中,权重剪枝技术成为优化模型结构的关键手段。对于前馈神经网络(FFN)而言,通过合理的权重剪枝能够减少冗余参数,降低计算复杂度,使模型更适合在资源受限的环境中运行。而敏感度排序公式则是权重剪枝的核心依据,它能帮助我们确定哪些权重在模型中更为关键,哪些可以被安全地剪掉。深入推导 FFN 的权重剪枝敏感度排序公式,不仅有助于理解权重剪枝的内在机制,还能为精准优化 LLM 中的 FFN 提供理论指导,提升模型的整体性能与效率。
2. FFN 权重剪枝基础
2.1 权重剪枝定义与目的
权重剪枝是指从神经网络中移除不重要的连接权重,使网络结构变得稀疏的过程。在 FFN 中,通过对权重矩阵进行剪枝,可以减少参数数量,降低模型的存储需求和计算量。其主要目的在于在尽量不影响模型性能的前提下,实现模型的轻量化,提高模型的推理速度,同时降低模型过拟合的风险,增强模型的泛化能力。例如,在将 LLM 部署到移动设备时,权重剪枝后的 FFN 能显著减少计算资源消耗,使模型运行更加流畅。
2.2 与其他优化技术的区别
与量化技术侧重于改变参数的数据类型以减少存储和计算量不同,权重剪枝直接对模型结构进行调整,通过删除部分权重来优化模型。与模型蒸馏通过知识迁移的方式将复杂模型的知识压缩到简单模型中也有所差异,权重剪枝更专注于对模型自身结构的优化。例如,量化技术可能会将 32 位浮点数的权重转换为 8 位整数,而权重剪枝则是直接去掉一些权重连接,两者在优化思路和操作方式上存在明显区别。
3. 相关技术原理与数学基础
3.1 梯度与参数重要性
梯度反映了损失函数对模型参数的敏感程度。在训练过程中,梯度较大的参数意味着其微小变化会对损失函数产生较大影响,通常被认为在模型中更为重要。例如,在反向传播算法中,通过计算损失函数关于每个权重的梯度,我们可以了解权重对模型输出的影响程度,从而为权重剪枝提供参考。
3.2 泰勒展开与局部近似
泰勒展开是分析函数在某一点附近行为的重要数学工具。对于 FFN 的损失函数 ,其中
表示模型的参数(权重),在参数
附近进行泰勒展开: