
GPT
文章平均质量分 91
强哥之神
格物致知
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
再次聊聊 AI Agents
之前写过几篇关于 AI Agents 的文章,具体可参见:《鉴于目前Manus火了后,AI Agents再次点燃大家的想象。今天再来聊聊它。原创 2025-06-26 13:49:31 · 1023 阅读 · 0 评论 -
阿里推出 R1-Omni:将强化学习与可验证奖励(RLVR)应用于全模态大语言模型
通过在训练过程中集成基于规则的奖励机制,R1-Omni 不仅被优化为准确的情感预测,还能生成清晰且可解释的解释,描述视觉和听觉信息是如何相互作用的。当在 RAVDESS 数据集(包含专业演员和标准化演讲)上进行评估时,该模型还表现出强大的泛化能力,这表明它能够适应不同类型的输入数据,同时保持一致的性能水平。尽管取得了进展,R1-Omni 仍面临挑战。总体而言,R1-Omni 提供了一个充满希望的框架,平衡了技术严谨性与可解释性的需求,为开发更透明和有效的多模态情感识别系统提供了有价值的见解。原创 2025-06-26 13:31:53 · 543 阅读 · 0 评论 -
Mac mini 跑 DeepSeek R1 及 QwQ-32B模型实测报告
Mac mini 运行大模型的能力已接近中端 GPU 工作站• ✅:适合企业级复杂场景,但需 14 核 CPU + 20 核 GPU + 64GB 内存的顶配支撑。• ✅QwQ-32B:个人开发者首选,量化版在 16GB 机型上即可流畅运行,但由于量化了,推理质量一般。全量版和,差不多。最终建议:优先根据任务复杂度选择模型,再通过量化与硬件优化降低成本。附:实测环境• 系统版本:macOS Sequoia 15.0• 框架工具:MLX 0.8.2 + Ollama 0.6.2。原创 2025-06-26 13:30:48 · 1070 阅读 · 0 评论 -
对 vllm 与 ollama 的一些研究
vLLM 是一个专为大模型推理优化的框架,旨在提高模型运行的效率和性能。它通过内存优化和推理加速技术,使得在资源有限的环境下也能高效运行大型语言模型。设计理念:vLLM 框架的设计注重于模型的可扩展性和灵活性,支持多种深度学习模型和推理任务,使其能够适应不同的应用场景。技术架构:vLLM 采用模块化设计,将模型推理过程分解为多个可替换的组件,如模型加载、数据预处理、推理执行等,便于开发者根据需求进行定制和优化。原创 2024-07-30 13:23:33 · 11607 阅读 · 0 评论 -
LlamaIndex vs LangChain: 理解关键差异
LLM(大型语言模型)已成为各行各业不可或缺的工具,用于生成类人文本、翻译语言和回答问题等任务。有时,LLM的响应令人惊叹,因为它们比人类更迅速、更准确。这表明了它们对当今技术格局的重大影响。今天让我们聊聊 LlamaIndex 和 langchain 这两个玩意儿。想象一下,你是个程序员,或者是个对 AI 特别感兴趣的人。你可能听说过这些名字,但可能不太清楚它们具体是干嘛的,对吧?原创 2024-07-30 13:14:29 · 1620 阅读 · 0 评论 -
浅谈AI大模型技术:概念、发展和应用
AI大模型技术已经在自然语言处理、计算机视觉、多模态交互等领域取得了显著的进展和成果,同时也引发了一系列新的挑战和问题,如数据质量、计算效率、知识可解释性、安全可靠性等。城市运维涉及到多个方面,如交通管理、环境监测、公共安全、社会治理等,它们需要处理和分析大量的多模态数据,如图像、视频、语音、文本等,并根据不同的场景和需求,提供合适的决策和响应。知识搜索有多种形式,如语义搜索、对话搜索、图像搜索、视频搜索等,它们可以根据用户的输入和意图,从海量的数据源中检索出最相关的信息,并以友好的方式呈现给用户。原创 2023-10-18 14:21:46 · 1483 阅读 · 0 评论