卓永鸿 提供
定理 罗必达法则
若 f(x)f(x)f(x) 与 g(x)g(x)g(x) 都在 x=ax = ax=a 的附近可微(g′(x)g'(x)g′(x) 在这附近不为 0 ),不必包含 aaa 点本身,且 limx→af(x)=limx→ag(x)=0\lim\limits_{x \to a} f(x) = \lim\limits_{x \to a} g(x) = 0x→alimf(x)=x→alimg(x)=0 或是 limx→af(x)=limx→ag(x)=∞\lim\limits_{x \to a} f(x) = \lim\limits_{x \to a} g(x) = \inftyx→alimf(x)=x→alimg(x)=∞ 。
则若
limx→af′(x)g′(x)=L \lim\limits_{x \to a} \frac{f'(x)}{g'(x)} = L x→alimg′(x)f′(x)=L
便可推论
limx→af(x)g(x)=L \lim\limits_{x \to a} \frac{f(x)}{g(x)} = L x→alimg(x)f(x)=L
有几个需注意的使用条件:
(1) 原极限须为不定式 00\frac{0}{0}00 或 ∞∞\frac{\infty}{\infty}∞∞
例如 limx→0sin(x)3+5x=0\lim\limits_{x \to 0} \frac{\sin(x)}{3 + 5x} = 0x→0lim3+5xsin(x)=0 并非不定式,上下微分以后 limx→0cos(x)5=15\lim\limits_{x \to 0} \frac{\cos(x)}{5} = \frac{1}{5}x→0lim5cos(x)=51
(2) 须上下微分后的极限存在,才能保证原极限也存在并且相等,而非两者直接画等号
例如 limx→∞x+sin(x)x=1\lim\limits_{x \to \infty} \frac{x + \sin(x)}{x} = 1x→∞limxx+sin(x)=1 ,上下微分以后 limx→∞1+cos(x)1\lim\limits_{x \to \infty} \frac{1 + \cos(x)}{1}x→∞lim11+cos(x) 不存在
(3) 须 f(x)f(x)f(x) 与 g(x)g(x)g(x) 都在 x=ax = ax=a 的附近(可不包含 x=ax = ax=a 本身)可微
这点是非常显然的,因为我们使用罗必达法则就是要求取 limx→af′(x)g′(x)\lim\limits_{x \to a} \frac{f'(x)}{g'(x)}x→alimg′(x)f′(x) ,即是看当 xxx 由 aaa 的附近趋向 aaa 时,整个函数是否会随之趋近一个定值,既然如此,就必须 f′(x)g′(x)\frac{f'(x)}{g'(x)}g′(x)f′(x) 在 aaa 的附近有定义。
以下来看看误用的实际例子:
已知 f′(a)=2f'(a) = 2f′(a)=2,求 limh→0f(a+h)−f(a−h)2h\lim\limits_{h \to 0} \frac{f(a + h) - f(a - h)}{2h}h→0lim2hf(a+h)−f(a−h)
正确解法
limh→0f(a+h)−f(a−h)2h=12limh→0[f(a+h)−f(a)h+f(a−h)−f(a)−h]=f′(a)=2\lim\limits_{h \to 0} \frac{f(a + h) - f(a - h)}{2h} = \frac{1}{2} \lim\limits_{h \to 0} \left[ \frac{f(a + h) - f(a)}{h} + \frac{f(a - h) - f(a)}{-h} \right] = f'(a) = 2h→0lim2hf(a+h)−f(a−h)=21h→0lim[hf(a+h)−f(a)+−hf(a−h)−f(a)]=f′(a)=2
不正确解法
limh→0f(a+h)−f(a−h)2h=Llimh→0f′(a+h)+f′(a−h)2=f′(a)=2\lim\limits_{h \to 0} \frac{f(a + h) - f(a - h)}{2h} \stackrel{\text{L}}{=} \lim\limits_{h \to 0} \frac{f'(a + h) + f'(a - h)}{2} = f'(a) = 2h→0lim2hf(a+h)−f(a−h)=Lh→0lim2f′(a+h)+f′(a−h)=f′(a)=2
- 所犯的错误一:由题目提供条件只知 f(x)f(x)f(x) 在 x=ax = ax=a 处可微,并不清楚在 x=ax = ax=a 附近是否可微,所以前提不满足。
- 所犯的错误二:要是无视错误一,还是对分子分母求导了,会碰到第二个问题,即 limh→0f′(a+h)+f′(a−h)2\lim\limits_{h \to 0} \frac{f'(a + h) + f'(a - h)}{2}h→0lim2f′(a+h)+f′(a−h) 该怎么接着解下去。常见的错误做法是直接代入 h=0h = 0h=0 得到 f′(a)+f′(a)2=f′(a)\frac{f'(a) + f'(a)}{2} = f'(a)2f′(a)+f′(a)=f′(a),但做极限问题能直接这样代入取值吗?除非你清楚 f′(x)f'(x)f′(x) 在 x=ax = ax=a 处是连续的,可题目没说明这一点。
或许你会好奇,在 x=ax = ax=a 处可微但在其附近不可微,这真的有可能吗?那下面就举一个具体例子:
设
f(x)={x3,x∈R∖Q0,x∈Q
f(x) = \begin{cases} x^3 & , x \in \mathbb{R} \setminus \mathbb{Q} \\ 0 & , x \in \mathbb{Q} \end{cases}
f(x)={x30,x∈R∖Q,x∈Q
以及
g(x)={x2,x∈R∖Q0,x∈Q
g(x) = \begin{cases} x^2 & , x \in \mathbb{R} \setminus \mathbb{Q} \\ 0 & , x \in \mathbb{Q} \end{cases}
g(x)={x20,x∈R∖Q,x∈Q
然后验证
f′(0)=limh→0f(h)−f(0)h=limh→0f(h)h
f'(0) = \lim\limits_{h \to 0} \frac{f(h) - f(0)}{h} = \lim\limits_{h \to 0} \frac{f(h)}{h}
f′(0)=h→0limhf(h)−f(0)=h→0limhf(h)
因为
−∣x3∣≤f(x)≤∣x3∣
-|x^3| \leq f(x) \leq |x^3|
−∣x3∣≤f(x)≤∣x3∣
所以
−∣h3∣h≤f(h)h≤∣h3∣h
-\frac{|h^3|}{h} \leq \frac{f(h)}{h} \leq \frac{|h^3|}{h}
−h∣h3∣≤hf(h)≤h∣h3∣
而
limh→0−∣h3∣h=0=limh→0∣h3∣h
\lim\limits_{h \to 0} - \frac{|h^3|}{h} = 0 = \lim\limits_{h \to 0} \frac{|h^3|}{h}
h→0lim−h∣h3∣=0=h→0limh∣h3∣
因此由夹挤定理我们知道
f′(0)=limh→0f(h)h=0
f'(0) = \lim\limits_{h \to 0} \frac{f(h)}{h} = 0
f′(0)=h→0limhf(h)=0
然而在 x≠0x \neq 0x=0 处显然 f(x)f(x)f(x) 并不连续,不连续也就不可微,g(x)g(x)g(x) 也是如此。
如果把它们相除
f(x)g(x)={x,x∈R∖Q0,x∈Q∖{0}
\frac{f(x)}{g(x)} = \begin{cases} x & , x \in \mathbb{R} \setminus \mathbb{Q} \\ 0 & , x \in \mathbb{Q} \setminus \{0\} \end{cases}
g(x)f(x)={x0,x∈R∖Q,x∈Q∖{0}
则显然极限
limx→0f(x)g(x)=0
\lim\limits_{x \to 0} \frac{f(x)}{g(x)} = 0
x→0limg(x)f(x)=0
但是假使无视前提去使用罗必达法则的话
limx→0f(x)g(x)=Llimx→0f′(x)g′(x)
\lim\limits_{x \to 0} \frac{f(x)}{g(x)} \stackrel{\text{L}}{=} \lim\limits_{x \to 0} \frac{f'(x)}{g'(x)}
x→0limg(x)f(x)=Lx→0limg′(x)f′(x)
由于 f′(x)f'(x)f′(x) 与 g′(x)g'(x)g′(x) 都只在 x=0x = 0x=0 处存在,而求极限 x→0x \to 0x→0 是从非 0 处趋近到 0 ,这使得 f′(x)g′(x)\frac{f'(x)}{g'(x)}g′(x)f′(x) 毫无意义!
另外补充不是误用,而是无法派上用场的例子:
limx→π2tan(x)sec(x)=Llimx→π2sec(x)tan(x)=Llimx→π2tan(x)sec(x)
\lim\limits_{x \to \frac{\pi}{2}} \frac{\tan(x)}{\sec(x)} \stackrel{\text{L}}{=} \lim\limits_{x \to \frac{\pi}{2}} \frac{\sec(x)}{\tan(x)} \stackrel{\text{L}}{=} \lim\limits_{x \to \frac{\pi}{2}} \frac{\tan(x)}{\sec(x)}
x→2πlimsec(x)tan(x)=Lx→2πlimtan(x)sec(x)=Lx→2πlimsec(x)tan(x)
limx→∞2x+13x−1=Llimx→∞23x−132x+1=Llimx→∞2x+13x−1
\lim\limits_{x \to \infty} \frac{\sqrt{2x + 1}}{\sqrt{3x - 1}} \stackrel{\text{L}}{=} \lim\limits_{x \to \infty} \frac{2 \sqrt{3x - 1}}{3 \sqrt{2x + 1}} \stackrel{\text{L}}{=} \lim\limits_{x \to \infty} \frac{\sqrt{2x + 1}}{\sqrt{3x - 1}}
x→∞lim3x−12x+1=Lx→∞lim32x+123x−1=Lx→∞lim3x−12x+1
使用条件没有问题,问题是没有简化式子 。
学习人工智能技术必备的数学知识,本书各大平台有售