《机器学习数学基础》补充资料:罗必达法则常见误用之探讨

卓永鸿 提供

定理 罗必达法则

f(x)f(x)f(x)g(x)g(x)g(x) 都在 x=ax = ax=a 的附近可微(g′(x)g'(x)g(x) 在这附近不为 0 ),不必包含 aaa 点本身,且 lim⁡x→af(x)=lim⁡x→ag(x)=0\lim\limits_{x \to a} f(x) = \lim\limits_{x \to a} g(x) = 0xalimf(x)=xalimg(x)=0 或是 lim⁡x→af(x)=lim⁡x→ag(x)=∞\lim\limits_{x \to a} f(x) = \lim\limits_{x \to a} g(x) = \inftyxalimf(x)=xalimg(x)=

则若
lim⁡x→af′(x)g′(x)=L \lim\limits_{x \to a} \frac{f'(x)}{g'(x)} = L xalimg(x)f(x)=L
便可推论
lim⁡x→af(x)g(x)=L \lim\limits_{x \to a} \frac{f(x)}{g(x)} = L xalimg(x)f(x)=L

有几个需注意的使用条件:

(1) 原极限须为不定式 00\frac{0}{0}00∞∞\frac{\infty}{\infty}

例如 lim⁡x→0sin⁡(x)3+5x=0\lim\limits_{x \to 0} \frac{\sin(x)}{3 + 5x} = 0x0lim3+5xsin(x)=0 并非不定式,上下微分以后 lim⁡x→0cos⁡(x)5=15\lim\limits_{x \to 0} \frac{\cos(x)}{5} = \frac{1}{5}x0lim5cos(x)=51

(2) 须上下微分后的极限存在,才能保证原极限也存在并且相等,而非两者直接画等号

例如 lim⁡x→∞x+sin⁡(x)x=1\lim\limits_{x \to \infty} \frac{x + \sin(x)}{x} = 1xlimxx+sin(x)=1 ,上下微分以后 lim⁡x→∞1+cos⁡(x)1\lim\limits_{x \to \infty} \frac{1 + \cos(x)}{1}xlim11+cos(x) 不存在

(3) 须 f(x)f(x)f(x)g(x)g(x)g(x) 都在 x=ax = ax=a 的附近(可不包含 x=ax = ax=a 本身)可微

这点是非常显然的,因为我们使用罗必达法则就是要求取 lim⁡x→af′(x)g′(x)\lim\limits_{x \to a} \frac{f'(x)}{g'(x)}xalimg(x)f(x) ,即是看当 xxxaaa 的附近趋向 aaa 时,整个函数是否会随之趋近一个定值,既然如此,就必须 f′(x)g′(x)\frac{f'(x)}{g'(x)}g(x)f(x)aaa 的附近有定义。

以下来看看误用的实际例子:

已知 f′(a)=2f'(a) = 2f(a)=2,求 lim⁡h→0f(a+h)−f(a−h)2h\lim\limits_{h \to 0} \frac{f(a + h) - f(a - h)}{2h}h0lim2hf(a+h)f(ah)

正确解法

lim⁡h→0f(a+h)−f(a−h)2h=12lim⁡h→0[f(a+h)−f(a)h+f(a−h)−f(a)−h]=f′(a)=2\lim\limits_{h \to 0} \frac{f(a + h) - f(a - h)}{2h} = \frac{1}{2} \lim\limits_{h \to 0} \left[ \frac{f(a + h) - f(a)}{h} + \frac{f(a - h) - f(a)}{-h} \right] = f'(a) = 2h0lim2hf(a+h)f(ah)=21h0lim[hf(a+h)f(a)+hf(ah)f(a)]=f(a)=2

不正确解法

lim⁡h→0f(a+h)−f(a−h)2h=Llim⁡h→0f′(a+h)+f′(a−h)2=f′(a)=2\lim\limits_{h \to 0} \frac{f(a + h) - f(a - h)}{2h} \stackrel{\text{L}}{=} \lim\limits_{h \to 0} \frac{f'(a + h) + f'(a - h)}{2} = f'(a) = 2h0lim2hf(a+h)f(ah)=Lh0lim2f(a+h)+f(ah)=f(a)=2

  • 所犯的错误一:由题目提供条件只知 f(x)f(x)f(x)x=ax = ax=a 处可微,并不清楚在 x=ax = ax=a 附近是否可微,所以前提不满足。
  • 所犯的错误二:要是无视错误一,还是对分子分母求导了,会碰到第二个问题,即 lim⁡h→0f′(a+h)+f′(a−h)2\lim\limits_{h \to 0} \frac{f'(a + h) + f'(a - h)}{2}h0lim2f(a+h)+f(ah) 该怎么接着解下去。常见的错误做法是直接代入 h=0h = 0h=0 得到 f′(a)+f′(a)2=f′(a)\frac{f'(a) + f'(a)}{2} = f'(a)2f(a)+f(a)=f(a),但做极限问题能直接这样代入取值吗?除非你清楚 f′(x)f'(x)f(x)x=ax = ax=a 处是连续的,可题目没说明这一点。

或许你会好奇,在 x=ax = ax=a 处可微但在其附近不可微,这真的有可能吗?那下面就举一个具体例子:


f(x)={x3,x∈R∖Q0,x∈Q f(x) = \begin{cases} x^3 & , x \in \mathbb{R} \setminus \mathbb{Q} \\ 0 & , x \in \mathbb{Q} \end{cases} f(x)={x30,xRQ,xQ
以及
g(x)={x2,x∈R∖Q0,x∈Q g(x) = \begin{cases} x^2 & , x \in \mathbb{R} \setminus \mathbb{Q} \\ 0 & , x \in \mathbb{Q} \end{cases} g(x)={x20,xRQ,xQ
然后验证
f′(0)=lim⁡h→0f(h)−f(0)h=lim⁡h→0f(h)h f'(0) = \lim\limits_{h \to 0} \frac{f(h) - f(0)}{h} = \lim\limits_{h \to 0} \frac{f(h)}{h} f(0)=h0limhf(h)f(0)=h0limhf(h)
因为
−∣x3∣≤f(x)≤∣x3∣ -|x^3| \leq f(x) \leq |x^3| x3f(x)x3
所以
−∣h3∣h≤f(h)h≤∣h3∣h -\frac{|h^3|}{h} \leq \frac{f(h)}{h} \leq \frac{|h^3|}{h} hh3hf(h)hh3

lim⁡h→0−∣h3∣h=0=lim⁡h→0∣h3∣h \lim\limits_{h \to 0} - \frac{|h^3|}{h} = 0 = \lim\limits_{h \to 0} \frac{|h^3|}{h} h0limhh3=0=h0limhh3
因此由夹挤定理我们知道
f′(0)=lim⁡h→0f(h)h=0 f'(0) = \lim\limits_{h \to 0} \frac{f(h)}{h} = 0 f(0)=h0limhf(h)=0
然而在 x≠0x \neq 0x=0 处显然 f(x)f(x)f(x) 并不连续,不连续也就不可微,g(x)g(x)g(x) 也是如此。

如果把它们相除
f(x)g(x)={x,x∈R∖Q0,x∈Q∖{0} \frac{f(x)}{g(x)} = \begin{cases} x & , x \in \mathbb{R} \setminus \mathbb{Q} \\ 0 & , x \in \mathbb{Q} \setminus \{0\} \end{cases} g(x)f(x)={x0,xRQ,xQ{0}
则显然极限
lim⁡x→0f(x)g(x)=0 \lim\limits_{x \to 0} \frac{f(x)}{g(x)} = 0 x0limg(x)f(x)=0
但是假使无视前提去使用罗必达法则的话
lim⁡x→0f(x)g(x)=Llim⁡x→0f′(x)g′(x) \lim\limits_{x \to 0} \frac{f(x)}{g(x)} \stackrel{\text{L}}{=} \lim\limits_{x \to 0} \frac{f'(x)}{g'(x)} x0limg(x)f(x)=Lx0limg(x)f(x)
由于 f′(x)f'(x)f(x)g′(x)g'(x)g(x) 都只在 x=0x = 0x=0 处存在,而求极限 x→0x \to 0x0 是从非 0 处趋近到 0 ,这使得 f′(x)g′(x)\frac{f'(x)}{g'(x)}g(x)f(x) 毫无意义!

另外补充不是误用,而是无法派上用场的例子:
lim⁡x→π2tan⁡(x)sec⁡(x)=Llim⁡x→π2sec⁡(x)tan⁡(x)=Llim⁡x→π2tan⁡(x)sec⁡(x) \lim\limits_{x \to \frac{\pi}{2}} \frac{\tan(x)}{\sec(x)} \stackrel{\text{L}}{=} \lim\limits_{x \to \frac{\pi}{2}} \frac{\sec(x)}{\tan(x)} \stackrel{\text{L}}{=} \lim\limits_{x \to \frac{\pi}{2}} \frac{\tan(x)}{\sec(x)} x2πlimsec(x)tan(x)=Lx2πlimtan(x)sec(x)=Lx2πlimsec(x)tan(x)

lim⁡x→∞2x+13x−1=Llim⁡x→∞23x−132x+1=Llim⁡x→∞2x+13x−1 \lim\limits_{x \to \infty} \frac{\sqrt{2x + 1}}{\sqrt{3x - 1}} \stackrel{\text{L}}{=} \lim\limits_{x \to \infty} \frac{2 \sqrt{3x - 1}}{3 \sqrt{2x + 1}} \stackrel{\text{L}}{=} \lim\limits_{x \to \infty} \frac{\sqrt{2x + 1}}{\sqrt{3x - 1}} xlim3x12x+1=Lxlim32x+123x1=Lxlim3x12x+1
使用条件没有问题,问题是没有简化式子 。

学习人工智能技术必备的数学知识,本书各大平台有售
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CS创新实验室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值