- 博客(656)
- 收藏
- 关注
原创 作为一个普通人,如何真正入局AI?—2025普通人想转行做AI,试试这5步!
AI大模型成为职场新风口,相关岗位年薪高达80-90万。面对这一趋势,普通人可通过五步转型为AI专家:1)评估现有技能;2)筛选可迁移至AI领域的能力;3)掌握必备的Python编程;4)打造AI项目履历;5)投入六个月专注学习。从ChatGPT到Midjourney,AI工具已渗透各行业,系统化学习是突破能力瓶颈的关键。科技巨头纷纷布局AI赛道,掌握大模型技术将成为程序员的核心竞争力。
2025-06-26 07:54:34
516
原创 【AI落地应用实战】RAGFlow + 知识图谱Knowledge Graph + Deepseek + 知识库构建初步探索_ragflow 知识图谱
摘要:传统检索增强生成(RAG)系统在处理多实体、多关系的复杂查询时存在局限性,主要表现为知识结构空心化、逻辑推理断裂和TopK截断问题。为优化这些问题,引入知识图谱(KG)成为有效解决方案。知识图谱通过结构化的节点和边表示实体间复杂关系,支持语义推理和多跳查询,从而提升RAG系统的精准性和理解能力。研究表明,结合知识图谱的RAG系统能更高效地处理跨领域关联问题,提供更全面的答案,具有显著的技术优势与实践价值。
2025-06-26 07:46:04
508
原创 大模型底座之向量化,以及向量化的原理
摘要: 向量化是大模型技术的核心基础,所有输入数据(文本、图像、音频等)均需转换为向量形式才能被处理。向量化优势在于高效数值计算、语义关系表达及矩阵运算优化。文本向量化常用技术包括One-hot编码、Word2Vec和词嵌入(Embedding),后者通过神经网络生成高维向量,广泛应用于搜索、推荐等场景。图像向量化则依赖CNN或自编码器提取特征。大模型输入层、隐藏层及语义存储(如RAG)均依赖向量化。文章还提供了AI大模型学习路线及资源包,涵盖系统设计、提示词工程、微调开发等七大阶段,助力开发者掌握大模型全
2025-06-26 07:42:13
446
原创 斯坦福李飞飞最新巨著《AI Agent综述》_aiagent综述 中文版
这篇80页的论文由李飞飞等14位专家联合撰写,探讨了多模态AI系统的前沿发展。研究内容涵盖AI代理与基础模型的应用、环境嵌入和多模态感知能力等关键方向,重点分析了如何通过外部知识、多感官输入和人类反馈来优化具身代理系统。论文还涉及NLP领域的机器翻译、语音识别等技术应用,以及应对假新闻等挑战的解决方案。研究展望了Agent AI的发展前景,包括在物理世界和虚拟环境中的智能交互可能。论文提供了AI领域的综合技术综述,相关完整版资料可通过CSDN免费获取。
2025-06-24 20:11:16
284
原创 大模型+数据分析:应用场景与实现路径的全面指南!_大模型 数据分析
大模型与数据分析的天然契合:降低使用门槛,赋能业务决策 数据分析正成为大模型的重要落地场景。随着数据分析工具从静态报表、敏捷BI发展到对话式BI,其核心趋势是不断降低业务部门的使用门槛。大模型的生成能力(如自然语言交互、自动生成分析报告和SQL查询)与决策能力(如指标归因和下钻分析)完美契合这一需求。目前银行、证券、消费品等行业已开始探索大模型与数据分析工具的深度结合,主要应用于经营决策(确保数据准确性)和业务探索(跨宽表查询)两大场景。实现路径包括大模型+指标平台(提升管理层决策效率)和大模型+知识库+数
2025-06-24 20:09:19
492
原创 AI编程时代已至,普通程序员如何把握行业大风口?
AI编程浪潮下,程序员如何转型?行业巨头任正非、周鸿祎、黄仁勋一致认为:AI不会取代程序员,但会淘汰不会使用AI的开发者。数据显示,掌握AI技术的工程师平均月薪达23.5K,核心岗位年薪超百万。AI虽能生成代码,仍需人工调试优化,程序员的核心价值在于将商业构想转化为技术方案。当前市场急需"AI+编程"复合型人才,智泊AI等机构已推出相关培训课程,帮助从业者把握技术红利。未来属于既能编码又懂AI协同的"智农",而非仅会写代码的"码农"。
2025-06-22 10:47:51
716
原创 程序员转行为什么这么难,2025年强烈建议程序员转行大模型试试_程序员转行容易吗
摘要: 文章探讨了大龄程序员转型的困境,指出四大难点:路径依赖(习惯性选择开发岗位)、成本压力(薪资落差难以承受)、技能缺乏(长期专注技术导致其他能力不足)以及他人期望(社会对“程序员”身份的固化认知)。作者强调,突破需直面路径依赖的思维局限,接受短期成本牺牲,主动拓展新技能,并勇敢应对外界标签化评价。转型虽难,但找到真正有意义的方向,比固守高薪但无成长的工作更具价值。
2025-06-22 10:42:34
1165
原创 不需要AI和数学知识背景,这篇文章带你学会大模型应用开发
文章摘要 本文为开发者提供了无需AI背景的大模型应用开发入门指南。作者指出,尽管大模型技术门槛看似很高,但业务开发中只需将其视为普通服务调用,重点在于如何结合业务需求设计流程。文章通过联网搜索应用案例,展示了如何通过多轮交互(Prompt Engineering)指挥大模型完成任务:先让模型判断是否需要搜索并生成关键词,再基于搜索结果生成最终回答。核心方法包括Zero-shot(直接指令)和Few-shot(示例教学)两种Prompt设计技巧。最后强调,开发者的价值在于构建AI Agent,将大模型能力有效
2025-06-22 10:38:12
982
原创 2025人工智能大模型61个应用场景,有你熟悉的吗?_ai大模型的应用场景
随着科技的飞速发展,人工智能(AI)已经成为推动社会进步的重要力量。其中,人工智能大模型作为AI领域的璀璨明珠,凭借其强大的处理能力和广泛的应用场景,正逐步改变着我们的生活和工作方式。本文将详细探讨人工智能大模型在自然语言处理、城市治理、自动驾驶、智慧医疗等多个领域的61大应用场景。
2025-06-19 18:51:08
880
原创 在GitHub发现一个了超级良心的RAG学习宝库
这个GitHub仓库简直是RAG技术学习的金矿!我最近深入研究时发现了它,里面系统整理了21种RAG实现方案,内容覆盖从入门级基础应用到业界前沿的高级技术。
2025-06-18 23:05:33
568
原创 斯坦福:2025年人工智能指数报告(中文版)|附456页PDF文件下载
斯坦福大学发布2025年人工智能指数报告(官方中文版)全文456页,以下是2025年人工智能指数报告的12个核心观点:人工智能性能持续提升:人工智能在严苛的比较基准测试中性能持续提升,如在MMMU、GPQA和SWE-bench等基准测试中,得分分别提高了18.8%、48.9%和67.3%。人工智能融入日常生活:人工智能正迅速从实验室走向日常生活,如美国FDA批准的人工智能医疗设备数量激增,以及自动驾驶汽车的商业化运营。
2025-06-18 22:47:30
543
原创 【知识库2】搞懂RAG的工作原理以及优势和局限性;不要乱用知识库啦,知识库不是万能的
RAG模型工作原理与实验验证 RAG通过“检索-生成-反馈”三阶段实现智能问答:1)检索阶段将问题向量化,从知识库中匹配语义相关片段;2)生成阶段结合检索结果与LLM生成流畅回答;3)多轮交互优化输出。实验验证发现,RAG在结构化数据(如Excel)中表现良好,但文本格式知识库可能出现检索不全问题(如仅返回部分学生数据)。其优势在于结合实时知识库确保准确性,但依赖检索质量且计算复杂度高,需通过混合检索、模型压缩等技术优化。知识库维护和生成透明度仍是关键挑战。
2025-06-18 10:30:00
1502
原创 6月最新大模型八股文,3天背完通过率超90%
大模型面试核心要点速览 当前AI大模型面试聚焦实战场景,涵盖12大核心领域:基础架构、微调技术、Transformer原理、LangChain应用等。重点考察:1)主流开源模型体系(GPT/BERT/T5);2)核心架构差异(prefix LM vs causal LM);3)关键技术创新(多查询注意力、Layer Normalization优化);4)典型问题解决方案(模型幻觉、复读机问题)。面试需深入理解Transformer机制,掌握BPE分词等底层原理,熟悉LLaMA、ChatGLM等模型特性,同时
2025-06-17 10:31:30
954
原创 【知识库1】聊一聊关于知识库中用到的几个模型:“生成式语言模型、检索模型、检索增强生成模型(RAG)”
摘要: 生成式语言模型(如GPT)擅长文本生成但依赖固定数据,易出现信息不准确问题;检索模型(如BM25)能快速查找事实,但缺乏连贯性。检索增强生成模型(RAG)结合两者优势,通过检索器实时获取外部知识,生成器融合信息并输出流畅回答,确保准确性与自然性。RAG适用于智能问答、内容生成等场景,其核心机制包括向量检索(语义匹配)与传统算法(关键词匹配),生成器则基于BART或GPT模型优化文本。学习RAG需掌握检索与生成的协同技术,提升AI应用的精准度和适应性。 (字数:149)
2025-06-17 10:23:18
967
原创 2025年想高薪!普通人转行做AI,试试这5步!_普通人如何进入ai行业
AI大模型时代,如何转型成为高薪专家?只需5步:1)评估现有技能,寻找AI领域可迁移能力;2)重点掌握Python编程语言;3)积累AI项目经验,打造专业简历;4)制定6个月高强度学习计划;5)持续实践。文章还提供了完整的大模型学习路线和640套行业资源包,包含书籍、报告、视频教程等内容,助力零基础者快速入行。掌握这些核心技能后,可从事模型开发、微调、多模态应用等热门方向,在电商、物流、健康等领域实现技术变现。
2025-06-12 22:23:29
737
原创 使用GraphRAG+LangChain+Ollama:LLaMa 3.1跑通知识图谱与向量数据库集成(Neo4j)
本文介绍了如何使用本地模型LLama 3.1进行GraphRAG操作,通过构建知识图谱来增强检索生成能力。GraphRAG利用节点(实体)和关系(连接)构建结构化知识,结合向量数据库提升检索效果。作者演示了如何用LangChain、Ollama和Neo4j创建意大利餐厅家族关系图谱,包括环境配置、数据加载和图转换等关键步骤。虽然该方法计算成本较高,但使用本地模型可有效降低成本。文章提供了完整的代码实现流程,从安装依赖到可视化图谱生成,展示了如何将文档信息转化为结构化知识图。
2025-06-12 22:21:44
565
原创 GitHub爆火!Happy-LLM项目解析:大模型学习=未来10年最硬核技能!
很多小伙伴想要深入了解大语言模型的原理和训练过程。那么今天给大家分享一个宝藏大模型项目!!
2025-06-04 14:46:19
266
原创 如何从零开始训练大模型?
大模型训练优化方向探讨:从小模型潜力到训练策略 近期围绕MiniCPM等小模型性能突破的讨论显示,在现有参数规模下,模型训练仍有优化空间。关键发现包括: 数据质量比数量更重要:高质量数据生成(PHI式)和清洗成为提升小模型性能的有效途径,天工开源数据被视为基础样本标杆。 训练阶段分化:业界普遍将训练分为快速收敛、稳定和退火三阶段,MiniCPM验证了末期加入高质量样本的"教科书学习"效果显著。 评估方法待突破:现有指标难以精准衡量小模型训练充分性,Yi-9B提出的层间cos分析法引发讨论
2025-06-04 14:41:03
789
原创 从入门到上手,大模型学习全路径指南(附实战项目推荐)
本文系统介绍大语言模型(LLM)的学习路径与实战方法。首先强调理解Transformer架构、编码方式等基础原理的重要性,然后提出微调的"七阶段工作流"和"八种方法"框架,推荐新手优先掌握Prompt Tuning+LoRA等轻量级方案。最后提供包含数据预处理、微调代码、Prompt设计等完整内容的新闻分类实战项目,并给出"先原理后实践"等学习建议。文末附赠LLM大模型学习资源包,适合零基础到进阶开发者参考。
2025-05-29 20:29:20
1198
原创 流行的 RAG 框架:RAGFlow与Dify框架对比分析
RAGFlow与Dify框架对比:企业知识库构建方案 本文对比了两种AI框架在企业知识库建设中的适用性。RAGFlow专注于深度文档理解和混合检索技术,擅长处理多模态数据;Dify则以低代码开发为特色,支持多种大模型和可视化工作流编排。分析表明,Dify因其低门槛开发、灵活模型支持和易部署维护等优势,更适合大多数企业构建内部知识库。文章还提供了大模型学习路线和实战案例资源,帮助开发者快速掌握相关技术。 关键点: RAGFlow强在文档检索与理解 Dify优势在于易用性和快速部署 企业知识库推荐采用Dify方
2025-05-29 20:24:05
820
原创 99%的人都应该看看这本书,精简小册子让你快速跨入大模型的世界
最近在高铁上用4个小时读完了《大模型应用开发极简入门》,这本书是面向想要快速了解大模型(如GPT-4、ChatGPT)并直接开始应用开发的读者量身打造的。书中的内容通俗易懂、结构清晰,从基础概念到实际应用案例都有详尽讲解,非常适合初学者阅读。
2025-05-29 20:18:24
763
原创 大模型推理的全面总结: 从DeepSeek->Kimi->豆包->Qwen3
近期关于大语言模型(LLM)推理能力的研究进展显示:强化学习(RL)虽然能优化模型输出分布,但并未实质性提升基础推理能力。DeepSeek-Math和清华团队的研究均指出,RL主要通过筛选已有正确答案来提升表现,而非扩展模型的推理边界。主流模型如Seed-Thinking-v1.5、DeepSeek-R1、Kimi-K1.5和Qwen3通过多阶段训练(数据优化、奖励模型设计、混合专家架构等)注入推理能力,其共性在于:强基础模型、高质量训练数据(覆盖广泛领域和难度)、针对性奖励机制以及SFT与RL的协同优化。
2025-05-28 17:22:36
838
原创 大模型RAG实战:全面讲解RAG技术原理、实战应用(附PDF书籍)
这是一本全面讲解RAG技术原理、实战应用与系统构建的著作。作者结合自身丰富的实战经验,详细阐述了RAG的基础原理、核心组件、优缺点以及使用场景,同时探讨了RAG在大模型应用开发中的变革与潜力。书中不仅揭示了RAG技术背后的数学原理,还通过丰富的案例与代码实现,引导读者从理论走向实践,轻松掌握RAG系统的构建与优化
2025-05-28 17:21:08
826
原创 如何从零开始搭建一个完整的MCP客户端
MCP客户端是AI应用程序(如Cursor)内的一个组件,它通过模型上下文协议(MCP)与外部工具和数据源建立标准化连接。今天,我们将向您展示如何100%本地构建它。技术栈:使用LlamaIndex构建MCP驱动的代理。使用Ollama本地服务Deepseek-R1。使用LightningAI进行开发和托管。
2025-05-23 11:25:56
785
原创 我是如何准备大模型算法岗面试的?
很多人问我如何准备大模型的面试,分享下我的经验 针对两种情况: 1. 有大模型实习 2. 无大模型实习 针对无大模型实习的情况,我建议先找一段中厂实习为主,比如 zhipu、Minimax (当然有大厂进大厂)这些,相对容易进,尽量积累大模型实习经历。
2025-05-23 11:19:47
1014
原创 AI Agent的五层难度进阶:从工具调用到系统构建(附代码实现)
在人工智能领域,代理(Agent)的开发始终是一个充满挑战与机遇的方向。当开发者们雄心勃勃地启动第一个代理项目时,往往会被“智能体”的概念所迷惑——误以为编写几个提示词、串联几次工具调用就能构建出真正具备自主性的代理。然而,现实往往泼来冷水:看似正常运行的原型,可能在遇到边缘情况时瞬间崩溃,暴露出“伪智能”的本质——没有真实状态管理、缺乏记忆能力、更不具备深度推理逻辑,不过是一个精心包装的提示词循环链。
2025-05-23 11:08:07
691
原创 解决小规格 LLM 6类幻觉的实用指南
LM中的幻觉有多种不同的形式,例如以下几种:• 事实幻觉:表现为输出错误回复或捏造答案,可通过RAG解决• 时间幻觉:表现为将陈旧或过时的知识作为当前知识,可通过时间感知提示解决• 上下文幻觉:表现为在回复中增加上下文中未提及或暗示的概念,可通过 Lookback Lens(一种基于回溯比例的检测器)解决• 语言幻觉:表现为回复的内容语法上没有问题但语义上没有意义,可通过语义连贯过滤解决• 外在幻觉:表现为回复为源文档不支持的内容,可通过拷贝/指针机制解决• 内在幻觉:表现为自相矛盾的答案,可通
2025-05-23 11:03:38
733
原创 40页!这是我见过的讲解大模型最易懂、也最漂亮的PPT(完整版)(介绍篇、使用篇、开发篇、扩展篇、应用篇、展望篇)
一共包含六个篇章(介绍篇、使用篇、开发篇、扩展篇、应用篇、展望篇),分享给大家
2025-05-23 10:50:44
520
原创 大模型外挂(向量)知识库
就目前而言如果我们想往大模型里边注入知识,最先能想到的就是对大模型进行微调。笔者曾实验过,只用几十万量级的数据对大模型进行微调并不能很好的将额外知识注入大模型,笔者在算力这方面囊中羞涩,只有4块卡,这几十万量级的数据训练6B的模型都要训练好几天。。。如果不微调的话,其实还是可以利用外挂数据库的方式让大模型利用额外的知识的,比如向量数据库或者是图数据库,本文主要讲解大模型如何外挂向量数据库,外挂图数据库如果之后有时间,实践之后再分享出来。
2025-05-15 21:47:14
705
原创 程序员如何转行大模型?五大热门岗位推荐,IT行业最后的风口就在大模型!错过就难有下次了
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;他们通常处理更复杂的数据类型,如图像、视频和音频,并开发能够处理这些数据的先进模型。
2025-05-09 23:01:36
693
1
原创 喝下这一碗模型汤,掌握向量模型的训练秘方
那些曾在KDD时代Kaggle上打榜刷分的老炮儿,每每提起 Bagging 与 Boosting 这两项技术嘴角都压不住笑。如果说Ensemble Learning代表了上个时代的机器学习,那么**“模型汤**就是当下大模型时代的热门:通过把不同模型调和在一起,从而得到一个效果更佳、表现更稳的新模型。就像做一锅蔬菜汤,把各种不同的食材混合在一起,味道会比单一食材更丰富、更美味。
2025-05-09 22:59:38
753
原创 太上头了[特殊字符]飞机上一口气读完AI神书
入门时看过一遍这本书,这几天二刷发现个事儿,之前面试的时候好多问题就是出自这里😂作者Denis Rothman是拥有丰富的AI领域经验大佬,为Moët et Chandon提供NLP聊天机器人,为空客公司提供AI战术防御优化器等。他亲撰的这本《RAG-Driven Generative AI》堪称AI界“神书”,能够让读者掌握如何实施Transformer来solve NLP问题。🔹介绍了Transformer架构的基本原理,还详细讲解了如何基于ChatGPT和GPT-4等大模型进行自然语言处理任务的开
2025-05-08 14:02:36
797
原创 我花了30分钟,搭好一个本地能跑起来的大模型,飞机上都能用
量化就是把AI模型中的数字变得更"简单"。原本模型里的数字精确到小数点后很多位,量化后用更简单的数字代替,这样可以让模型变得更小,运行更快。
2025-05-08 13:55:59
601
原创 月薪已炒到6W?强烈建议大家冲一冲这个新兴领域!
2025年,AI大模型不仅在,也在等待程序员们的,现在会用MCP都已经不是新鲜事了,更何况**曾经热门的开发框架、大数据工具等,已不再是就业的金钥匙。**制造、医疗、金融等各行业都在加速AI应用落地,未来企业更看重能用AI大模型技术重构业务流的人才。最近科技巨头英特尔宣布裁员2万人,传统岗位不断缩减,但,有3-5年经验,大厂薪资就能给到!风口之下,与其像“温水煮青蛙”一样坐等被行业淘汰,不如先人一步,掌握,“顺风”翻盘!
2025-05-07 21:40:53
1136
原创 思考:Qwen3是如何实现混合推理(快慢思考)的?
上面都是我个人的一些分析与推测,并没有官方背书,所以也许我的内容会出现一些问题。欢迎大家交流与讨论!读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用如果你是零基础小白,想快速入门大模型是可以考虑的。一方面是学习时间相对较短,学习内容更全面更集中。二方面是可以根据这些资料规划好学习计划和方向。包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!😝有需要的小伙伴,可以保存图片到wx扫描二v码。
2025-05-07 21:38:31
687
原创 大模型面试题合集,大模型面试八股文
以下是针对大模型(如GPT、LLaMA、PaLM等)技术面试的八股大纲,涵盖核心概念、原理、训练技巧、应用及优化方向等内容,帮助系统化准备面试:
2025-05-06 13:48:37
552
原创 RAG现有框架总结:7个GraphRAG+17个传统RAG | 推荐收藏_kotaemon ragflow
传统的RAG(Retrieval-Augmented Generation)框架,是一种集成了多个关键环节的综合体系,这些环节包括文本切块(Chunk)、向量转换(向量化)、数据存储、信息检索、二次排序、内容生成、内容评估等。该框架的精髓在于能够灵活适应各种策略,例如文档处理方法和检索策略等。其中,具有代表性的实现有RAGFlow(专注于深度文档理解)、QAnything(引入重排序 Rerank 机制)以及高度可配置的 Dify 等。这些实现虽然在细节上有所差异,但基本原理相似。
2025-05-06 12:00:04
987
原创 2025,我(普通人)学习大模型的方法和步骤
一开始,我对大模型的认知,是停留在ChatGPT的使用上,只知道大模型可以对话聊天,像一个真人,感觉很神奇,但是不知道是怎么实现的。其实调用接口,接入自己的系统,这个是很简单的事情,通过看接口文档,正确传参数就可以了。通过搜索发现,有ChatGPT,DeepSeek,文心一言,通义千问,豆包,KIMI,讯飞等。然后我分别试用了一下,对于我这种不用也不想用科学上网的人来说,ChatGPT等国外的也就跳过了(包括我后面对大模型的使用和微调,也是都选用国内的工具来完成),那些没有免费试用额度的也跳过了。
2025-05-06 11:55:34
787
原创 本地部署多模态大模型,并结合Open-WebUI和Dify实现多模态对话、智能体,保姆级!
Ollama是一个开源框架,专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计。Open WebUI(前身为Ollama WebUI)是一个专为大型语言模型(LLM)设计的可扩展、功能丰富且用户友好的自托管Web管理工具,旨在为用户提供直观、高效的大模型交互体验。本文主要介绍了如何在本地安装Ollama、Open-WebUI,并介绍了Open-WebUI、Dify结合Ollama的一些玩法,还有更多高阶功能等待你去探索。
2025-05-06 11:24:22
1625
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人