自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(108)
  • 资源 (2)
  • 问答 (3)
  • 收藏
  • 关注

原创 3.7 小结

云可视化工具就像是打开点云数据宝藏大门的钥匙,能让我们直观地理解和分析这些复杂的数据。本章节,主要介绍了PCL、Open3D、Matplotlib、PCShow、VTK 这几种点云可视化工具,并对其做了对比分析。从数据读取、代码语言、平台、可视化功能、接口复杂性、内存、应用场景进行了全方面的总结。

2025-07-16 09:06:45 768

原创 3.6 vtk可视化

本文介绍了VTK可视化管线的基本原理及其在点云可视化中的应用。VTK可视化管线由数据对象、处理对象(数据源、过滤器和映射器)和数据流方向三个要素构成,形成一个数据加工流水线。文章详细阐述了点云可视化流程,包括从文件读取数据、去噪处理、映射到图形元素并渲染显示的全过程。同时讲解了坐标变换、光照计算和投影等关键渲染原理。通过Python代码示例(包括基础可视化和进阶颜色映射技巧)展示了如何实现点云可视化,并介绍了VTK与PyQt5的GUI集成方法。这些技术可帮助开发者高效实现科学数据的可视化呈现。

2025-07-16 08:55:43 16

原创 3.5 matlab pcshow可视化

本文介绍了使用matlab的pcshow进行3D点云可视化的方法。主要分为以下几个部分:(1)基本使用;(2)进阶技巧;(3)实战应用;(4)常见问题与解决方案。

2025-07-16 08:52:44 32

原创 3.4 matplotlib可视化

本文介绍了使用Matplotlib进行3D点云可视化的方法。首先讲解了Matplotlib的安装方式(pip和conda),以及必要的依赖库(numpy、Axes3D)。通过随机点云示例演示了基本可视化流程,包括数据生成、3D图形创建和散点图绘制。进阶部分详细介绍了如何通过调整颜色映射、点大小和透明度等参数实现点云自定义。实战环节展示了真实点云数据的读取(PCD格式)、滤波降采样等预处理方法。最后针对大数据量和显示效果问题,提出了采样优化、数据结构选择和可视化参数调整等解决方案。全文配有详细代码示例,帮助读

2025-07-16 08:21:07 15

原创 3.3 open3D可视化

本文介绍了使用Open3D进行三维点云可视化的基本流程和进阶技巧。主要包括:1)基础可视化,通过draw_geometries函数显示点云,并设置视角参数;2)交互式可视化,使用draw_geometries_with_editing等函数实现点选择、裁剪等操作;3)多几何对象可视化,同时显示多个点云或网格。实战部分展示了两个点云的合并与可视化,通过设置不同颜色区分点云,并实现交互式观察。这些功能为三维点云处理提供了直观的分析工具。

2025-07-16 08:16:20 9

原创 3.2 pcl可视化

PCL点云可视化工具摘要:PCL提供了CloudViewer(快速预览)和PCLVisualizer(高级控制)两种可视化方式。基础操作包括点云加载、点大小/颜色设置;进阶功能支持多视窗对比、几何元素绘制和深度图像联合显示。可视化流程涵盖数据准备、对象创建、内容添加和交互控制。通过调整渲染参数和视口配置,可实现点云配准、目标检测等任务的结果验证,为三维数据处理提供直观分析工具。

2025-07-16 08:11:41 11

原创 3.1 引言

点云可视化技术是实现三维环境感知与分析的关键工具,广泛应用于自动驾驶、城市规划和工业检测等领域。当前技术已实现海量点云的高效渲染与智能处理,但仍面临数据存储、实时性及多源融合等挑战。未来,随着4D LiDAR、AI算法和边缘计算的发展,点云可视化将向轻量化、自监督和闭环决策方向演进,成为数字孪生等智能应用的核心支撑。本章重点介绍了PCL、Open3D等主流点云可视化工具库及其基础渲染技术。

2025-07-16 08:03:21 119

原创 登山第二十七梯:高精度点云配准——超高速运转

本文提出了一种高效稳健的点云配准方法TurboReg,通过创新的TurboClique结构和枢轴引导搜索(PGS)算法,在保持高精度的同时显著提升速度。TurboClique采用严格空间约束的3-clique结构,兼具轻量化和稳定性;PGS算法通过高SC2分数匹配对引导搜索,实现线性时间复杂度。实验表明,TurboReg在3DMatch、3DLoMatch和KITTI等数据集上达到最先进性能,CPU/GPU平台运行速度比现有方法快1.82-208倍,在低重叠场景中尤其有效。该方法为实时点云配准提供了新思路。

2025-07-15 15:59:18 36

原创 ROS第十五梯:launch进阶用法——conda自启动和多终端多节点运行

本文介绍了ROS中launch文件的两个实用技巧:1)通过设置环境变量自动启动conda虚拟环境,避免频繁手动激活;2)利用launch-prefix参数实现多节点独立终端运行。文章提供了具体配置示例,展示了如何整合这两项功能到单个launch文件中,实现一键启动带虚拟环境的分布式节点调试方案。

2025-07-15 15:02:17 173

原创 登山第二十六梯:单目3D检测一切——一只眼看世界

《DetAny3D:可提示的3D检测基础模型实现开放世界泛化》 摘要:本文提出DetAny3D,一种突破性的3D检测基础模型,解决了现有方法在新物体类别和相机配置下的零样本泛化难题。通过创新性地整合预训练2D基础模型(SAM和DINO)的视觉先验,模型开发了2DAggregator特征融合模块和3D解释器中的零嵌入映射机制,有效克服了3D标注数据稀缺和知识迁移中的灾难性遗忘问题。实验证明,该模型在跨数据集评估中展现出卓越性能:在KITTI等数据集上实现最高28.96 AP3D,较基线提升3.4倍;面对新型相

2025-07-07 11:49:40 958

原创 登山第二十五梯:点云建筑物自动重建——一键盖楼

【摘要】本研究提出了一种全自动方法City3D,用于从机载LiDAR点云重建大规模紧凑3D建筑模型。针对垂直墙面缺失的挑战,方法创新性地通过屋顶平面推断垂直墙,结合平面段假设与优化框架构建模型。核心贡献包括:(1) 新型最优传输算法从2D边界提取折线生成垂直平面;(2) 在PolyFit框架中引入屋顶偏好能量项和拓扑约束;(3) 构建含20k建筑的数据集。实验表明,该方法在AHN3、DALES等数据集上重建精度达0.04-0.26m RMSE,模型紧凑性优于主流方法。研究为城市数字化提供了高效解决方案,代码

2025-06-19 20:13:17 1172

原创 传感器篇(三)——4D毫米波雷达

如今,马路上的智能驾驶汽车越来越多,从自动跟车到自动泊车,这些炫酷功能的背后,离不开传感器的 “火眼金睛”。当激光雷达因高昂成本引发争议,传统毫米波雷达又稍显 “力不从心” 时,一款全新的黑科技传感器 ——4D 毫米波雷达,正悄然登上舞台,它究竟藏着怎样的奥秘?又将给智能驾驶带来哪些颠覆性的改变?今天,咱们就一起来揭开它的神秘面纱!

2025-06-19 10:18:50 1389

原创 ROS第十四梯:ROS与Anaconda的不解之谜一——import onnxruntime报错,其它库正常

摘要:本文分析了在ROS环境下运行ONNX相关库时出现的导入错误问题。排查发现,尽管在Python虚拟环境中运行正常,但通过catkin_make编译后rosrun运行时却报错。根本原因是编译时使用了系统Python而非虚拟环境的Python。解决方案是确保在虚拟环境中直接编译,或通过-DPYTHON_EXECUTABLE指定虚拟环境的Python路径,并清除之前编译数据以防残留影响。该问题凸显了ROS与Python虚拟环境交互时的路径配置重要性。

2025-06-13 09:17:52 145

原创 登山第二十四梯:无序点云平面快速分割——变种PCA

本文提出了一种基于稳健统计的无序点云平面检测新方法。该方法采用八叉树分割、新型平面度检验(结合中位数和MAD的稳健统计)及迭代增长-合并策略,自动调整参数适应数据分布,无需人工调参。实验表明,该方法在7个不同特征数据集上均取得最优性能(平均F1分数0.92),处理速度达O(nlogn),显著优于霍夫变换、RANSAC等传统方法。创新点包括抗噪平面度检验、自适应参数机制和精确的平面区域划定。该方法为工业逆向工程和自动驾驶等应用提供了高效可靠的平面检测方案。

2025-06-13 09:13:12 887

原创 登山第二十三梯:有序点云平面快速分割——35Hz帧速前进

本文提出了一种基于凝聚分层聚类的实时平面提取算法,适用于Kinect等设备采集的有序点云。算法首先将点云划分为不重叠节点构建图结构,通过节点合并检测平面区域,最终采用像素级区域增长优化边界。实验表明,该算法能以>35Hz处理640×480点云,速度显著优于现有方法,同时保持相当的精度。创新点包括:利用有序点云特性实现对数线性复杂度;无需逐点法线估计;通过图初始化预处理提升效率。在模拟和真实场景测试中均表现出良好的鲁棒性和实时性。未来计划扩展至无序点云及其他几何基元检测。

2025-05-29 15:11:50 752

原创 2.6 点云数据存储格式——小结

格式的数据组织方式,包括数据的存储顺序、数据类型的定义等,了解其如何影响数据的读取与写入效率。在属性支持方面,分析每种格式能够支持的点云属性,如坐标、颜色、法线、强度等,以及对不同属性的存储方式与精度。:若需要在不同软件和平台间交换数据,应选择兼容性好的格式,如.ply;随着点云技术的不断发展,未来点云数据存储格式将朝着更加标准化、高效化、智能化的方向演进,以满足日益增长的应用需求。:使用标准化格式(如.las、.ply)可降低开发成本,自定义的.bin 格式虽然灵活,但开发和维护成本较高。

2025-05-08 15:48:51 93

原创 2.5 点云数据存储格式——大型点云传输格式

若点云还包含颜色信息(RGB),可能在坐标数据之后,依次存储每个点的 R、G、B 值(每个颜色通道通常用 1 字节的 uchar 类型存储),此时文件结构变为先存储 N 个点的坐标数据,再存储 N 个点的颜色数据。在点云数据领域,以 “.bin” 为后缀的文件通常指二进制格式的点云数据存储文件。这种格式没有统一的标准规范,不同的软件、框架或应用场景下,.bin 文件的具体数据结构和存储规则差异较大,通常需要根据开发者自定义的协议或特定软件的要求进行解析和读写。元数据之后再存储实际的点云数据。

2025-05-08 15:47:22 70

原创 2.4 点云数据存储格式——轻量文本型存储格式

.xyz 格式没有严格统一的标准规范,除了基本的坐标存储格式外,对于额外属性的添加、数据分隔符的使用等方面没有强制要求,这可能导致不同软件生成的.xyz 文件在格式上存在细微差异,在数据交换和共享过程中可能出现兼容性问题,需要进行额外的格式转换和处理。:由于其文本性质,用户可以直接在文本编辑器中对.xyz 文件进行编辑操作,如手动修改点的坐标值、删除或添加点等,这对于小规模点云数据的微调非常方便,例如在制作简单的三维模型原型时,可以快速调整点的位置来改变模型形状。

2025-05-08 15:44:01 74

原创 2.3 点云数据存储格式——LiDAR专用型点云存储格式

这使得不同来源的三维数据可以方便地进行交换和共享,例如 FARO、Trimble 等品牌的激光扫描仪采集的数据,都可以以 E57 格式进行存储和传输,有效打破了数据孤岛,提高了数据的利用效率。同时,丰富的元数据为数据的分析和处理提供了全面的背景信息。通过文件头的版本控制、数据块的标识和校验机制,以及元数据的详细描述,能够准确记录和传递数据信息,避免数据丢失或错误,为后续的数据处理和分析提供可靠的基础。数据块是 E57 文件存储实际数据的部分,可包含多种类型的数据,如点云数据、图像数据、网格数据等。

2025-05-08 15:39:44 80

原创 2.2 点云数据存储格式——通用型点云存储格式

定义每个字段的数据类型,使用单个字符表示。:尽管二进制格式的 PLY 文件在存储效率上有一定提升,但与一些专门为大规模数据设计的格式(如用于 LiDAR 数据的 LAS/LAZ 格式)相比,在处理超大规模点云数据时,无论是存储占用空间还是读写速度,都可能无法满足实时性要求。:指定点云的视点信息,格式为 “VIEWPOINT x y z qx qy qz qw”,分别表示视点的三维坐标和四元数旋转信息,默认值为 “VIEWPOINT 0 0 0 1 0 0 0” ,表示没有旋转和平移。

2025-05-08 15:33:04 63

原创 2.1 点云数据存储格式——引言

例如,在自动驾驶场景中,车辆需要实时处理大量的点云数据以做出决策,此时高效的存储格式能够大大缩短数据读取与处理的时间,提升系统的响应速度。在复杂场景下,如大规模城市三维建模中,不同类型的点云数据需要进行整合与分析,合适的存储格式能够更好地满足这种复杂需求,确保数据的有效利用。当前,不同领域对 3D 点云数据的需求呈现出多样化的特点。这些不同的需求对存储格式提出了不同的要求,亟需对典型的存储格式进行系统性梳理,明确其技术特征与适用边界,为各领域的点云数据管理提供科学的选型参考。

2025-05-08 15:22:21 877

原创 ROS第十三梯:RViz+Marker——自定义几何形状可视化

在ROS(Robot Operating System)中,Marker是一种用于在RViz(Robot Visualization)中显示自定义几何形状和注释的工具。mesh_resource:当 type 为 MESH_RESOURCE 时的网格资源路径。解决方案:将代码中frame_id由“/my_frame”修改为“my_frame”。text:当 type 为 TEXT_VIEW_FACING 时的文本内容。mesh_use_embedded_materials:是否使用嵌入式材质。

2025-05-07 19:37:33 113

原创 1.8 点云数据获取方式——小结

在典型场景的应用中,激光扫描仪凭借其全光照适应能力,无论是在阳光明媚的户外,还是光线昏暗的室内,都能稳定工作,成为工业测绘、文物保护等场景的首选。激光扫描仪由于其复杂的技术和精密的制造工艺,成本通常在万元 - 百万元级,对于一些预算有限的项目来说,可能是一道难以跨越的门槛。深度相机成本亲民,在百元 - 千元级,非常适合消费级产品的集成,为智能家居设备的智能化升级提供了可能。多视图重建虽然精度相对较低,在厘米 - 米级范围,但它的灵活性和低成本,使其在对精度要求不那么极致的电商建模等场景中得到广泛应用。

2025-04-29 20:38:33 128

原创 1.7 点云数据获取方式——视觉SLAM

VSLAM 通过相机序列实时估计传感器位姿并重建环境结构,生成的三维点云不仅为增强现实(AR)、自动驾驶、机器人导航等领域提供空间基准,还推动了从稀疏特征点到稠密场景建模的技术演进。通过图优化算法(如 g2o、Ceres 等),最小化重投影误差等目标函数,调整相机位姿和地图点的位置,从而得到更精确的全局一致的轨迹和地图。根据应用需求和传感器类型,可生成稀疏点云地图(适用于快速定位与导航,计算量小)、半稠密点云地图(包含场景中主要结构和边缘信息)或稠密点云地图(精确还原场景细节)。

2025-04-29 20:36:56 173

原创 1.6 点云数据获取方式——单目相机多视图几何

给定一个不受约束的图像集合,可能是小的(1 张图像)或大的(> 1000 张图像),我们首先使用高效的图像检索技术计算稀疏场景图,给定冻结的 MASt3R 的每张图像特征。早期的研究主要基于简单的几何投影原理,尝试通过手工测量图像中的特征点,利用三角测量方法估算物体的空间位置。其中, (u,v) 为图像平面上的像素坐标, (X,Y,Z) 为三维空间点在相机坐标系下的坐标, fx 和 fy 分别为相机在 x 和 y 方向的焦距, (u0 ,v0 ) 为图像平面的主点坐标, Z 为三维点到相机光心的距离。

2025-04-29 20:34:33 625

原创 1.5 点云数据获取方式——双目立体相机

同时,智能化程度不断提升,部分相机内置 AI 芯片,集成 “People Detection” 等算法,可实时识别人体和物体,如 SICK 推出的 Visionary - B Two 户外双目相机,在工程机械和农业机械领域实现了精准的人员识别和避障功能。1878 年伊士曼・柯达发明胶卷后,立体摄影相机开始使用胶卷拍摄,这些早期相机通过两个平行镜头同时拍摄,获取具有视差的两幅图像,实现简单的三维场景记录,但受限于光学材料与成像技术,图像质量和深度测量精度较低。其中,B 为相机基线距离,f为镜头焦距。

2025-04-29 20:30:43 471

原创 1.4 点云数据获取方式——结构光相机

与此同时,利用相机从特定角度捕捉变形后的图案,基于三角测量原理,通过精确计算相机与投影仪之间的几何关系以及图案的变形程度,就能准确计算出物体表面各点的三维坐标,从而获取高精度的三维点云数据。在高端制造业中,对于微小零部件的尺寸测量和缺陷检测,结构光相机能够提供极其精确的数据,确保产品质量符合严格的标准。时序编码:这类相机通过序列投射多幅不同图案,如格雷码、相移条纹等,通过对这一系列图案的时间序列进行解码分析,就能够获取亚像素级精度的三维信息,其单点误差能够控制在≤0.1mm,展现出极高的测量精度。

2025-04-29 20:27:21 543

原创 1.3 点云数据获取方式——ToF相机

Kinect 2.0 的成功,不仅证明了 ToF 技术在消费电子领域的可行性和巨大潜力,也为后续相关产品的研发和应用奠定了基础,激发了更多厂商对 ToF 技术在消费级市场的探索热情。例如,在制造过程中,需要使用高精度的时钟源和先进的集成电路工艺来保证时序的准确性,这使得 dToF 相机的生产成本居高不下,限制了其在一些对成本敏感的消费级市场中的应用。例如,半导体激光器的出现,为 ToF 系统提供了高功率、高效率的光源,而高精度的光电探测器则能够更准确地检测反射光信号,从而提高了距离测量的精度。

2025-04-29 20:23:34 494

原创 1.2 点云数据获取方式——激光雷达

通过精确测量激光脉冲从发射到接收的时间间隔(Time of Flight,ToF),结合光在空气中的传播速度(约为 299792458m/s ),利用公式d=c×Δt/2(d表示目标物体的距离,c为光速,Δt是激光脉冲往返的时间差),就能计算出目标物体与激光雷达之间的距离,从而。激光雷达本质上是一种光探测与测距设备,通过向目标物体发射激光脉冲,然后接收从物体表面反射回来的激光信号,依据特定算法计算出目标物体的相关参数,从而实现对周围环境的感知与测绘。2. 三维激光扫描技术崛起(1990-2000 年)

2025-04-29 20:19:13 645

原创 1.1 点云数据获取方式——引言

点云数据是指能够描述外部场景、对象表面的三维空间位置,并具有相关属性的点集,其每个离散点通常包括三维空间位置(x,y,z)以及强度、颜色等属性信息。大量分布的离散点集能够清晰而直接地描绘场景、对象的3D形状,通过不同属性进行点云赋色渲染从而提升其3D可视化效果。

2025-04-29 20:15:37 500

原创 〇 开篇序言

在科技飞速发展的今天,三维数据的获取与处理已成为众多领域突破创新的关键。而点云,作为三维空间信息的直观载体,正以其独特的魅力与强大的功能,掀起一场关于空间认知与数据处理的深刻变革。从自动驾驶汽车精准感知周围环境,到无人机测绘绘制出高精度的地形地貌;从工业检测实现对零部件的精密测量,到虚拟现实构建出沉浸式的虚拟世界,点云技术无处不在,重塑着我们与现实世界交互的方式。

2025-04-29 20:12:48 71

原创 ROS第十二梯:ros-noetic和Anaconda联合使用

可以看到上面libffi.7.so链接到了libffi.so.8.1.2上,这是因为我当前python版本为3.8.20,在该库中,就会出现兼容老版本问题,即出现libffi.7.so链接到libffi.so.8.1.2。sys.path.append(“/home/【用户名】/.conda/envs/【虚拟环境名】/lib/python3.x/site-packages”)/home/【用户名】/.conda/envs/【虚拟环境名】/bin/python。我是使用的方案2,亲测有效,解决了上述问题。

2025-04-23 20:51:24 549

原创 ROS第十一梯:ROS+VSCode+C+++服务通信

在 ROS(机器人操作系统)中,.srv文件用于定义服务(Service)的接口,是实现节点间请求 - 响应式通信的核心组件。Python 需要调用的中间文件(.../工作空间/devel/lib/python3/dist-packages/包名/srv)// if (argc!ROS_INFO("服务器接收到的请求数据为:num1 = %d, num2 = %d",num1, num2);C++ 需要调用的中间文件(.../工作空间/devel/include/包名/xxx.h)

2025-04-23 20:46:27 45

原创 机器人仿真:外部三维模型导入仿真环境及显示

除了使用Gazebo搭建仿真环境,还可以导入外部模型,如通过solidworks等软件设计的精细3D模型。第一步:创建gazebo模型文件model.sdf和model.config,并将其放置在同一个文件夹pallet中,同时,将stl文件也放置在该文件夹中。注意,由于外部导入模型的尺寸在gazebo中显示,通常会放大1000倍,因此,需要设置scale标签,将模型缩小1000倍。第四步:启动gazebo,在insert界面选择pallet添加到world中,并保存为world文件供调用。

2025-04-23 09:55:34 368

原创 机器人仿真:kinect信息仿真以及显示

Kinect 相机是微软开发的一款革命性深度感知设备,通过融合多模态传感器和算法,实现了从体感交互到工业级 3D 建模的广泛应用。ToF(V2):发射高频红外脉冲,通过测量光往返时间计算距离(d=c×Δt/2),支持 0.5-4.5 米检测范围,抗干扰能力显著提升。深度传感器:结构光(V1):通过红外发射器投射散斑图案,红外相机捕捉变形后的数据,利用三角测量计算深度(精度 ±1-3 厘米)。RGB 摄像头:Kinect V2 采用 1080P 彩色摄像头,支持环境纹理捕捉(如场景识别、物体分类)。

2025-04-23 09:53:09 132

原创 机器人仿真:相机信息仿真及显示

除了激光雷达以外,机器人常用的视觉传感器还包括相机,相机图像能够获取真实世界的真实颜色和纹理信息,能够被用于进行目标检测、分割和追踪。xacro与Gazebo。程序Launch文件。

2025-04-23 09:47:55 200

原创 机器人仿真:激光雷达信息仿真及显示

关于URDF(Xacro)、Rviz 和 Gazebo 三者的关系,前面已有阐述: URDF 用于创建机器人模型、Rviz 可以显示机器人感知到的环境信息,Gazebo 用于仿真,可以模拟外界环境,以及机器人的一些传感器,如何在 Gazebo 中运行这些传感器,并显示这些传感器的数据(机器人的视角)呢?本节主要介绍的重点就是将三者结合:通过 Gazebo 模拟机器人的传感器,然后在 Rviz 中显示这些传感器感知到的数据。-- 雷达仿真的 xacro 文件 -->-- 组合小车底盘与传感器 -->

2025-04-21 08:37:19 152

原创 机器人仿真:Gazebo仿真环境搭建

到目前为止,我们已经可以将机器人模型显示在 Gazebo 之中了,但是当前默认情况下,在 Gazebo 中机器人模型是在 empty world 中,并没有类似于房间、家具、道路、树木... 之类的仿真物,如何在 Gazebo 中创建仿真环境呢?点击: 左上角 file ---> Save (保存路径功能包下的: models)-- 将 Urdf 文件的内容加载到参数服务器 -->-- 在 gazebo 中显示机器人模型 -->方式1: 直接添加内置组件创建仿真环境。-- 启动 gazebo -->

2025-04-21 08:33:25 573

原创 机器人仿真:xacro与Gazebo

在 ROS 中,Xacro(XML Macro Language)是一种用于简化 URDF(机器人描述文件)的宏语言,通过参数化、模块化和代码复用,让复杂机器人模型的定义更加简洁高效。结合 Gazebo 仿真时,Xacro 能显著提升 URDF 模型的可读性和维护性,尤其适合定义包含物理属性、传感器、控制器的复杂机器人。组合底盘、摄像头与雷达的 Xacro 文件。

2025-04-13 11:33:17 465

原创 机器人仿真:URDF与Gazebo

较之于 rviz,gazebo在集成 URDF 时,需要做些许修改,比如:必须添加 collision 碰撞属性相关参数、必须添加 inertial 惯性矩阵相关参数,另外,如果直接移植 Rviz 中机器人的颜色设置是没有显示的,颜色设置也必须做相应的变更。原则上,除了 base_footprint 外,机器人的每个刚体部分都需要设置惯性矩阵,且惯性矩阵必须经计算得出,如果随意定义刚体部分的惯性矩阵,那么可能会导致机器人在 Gazebo 中出现抖动,移动等现象。-urdf 加载的是 urdf 文件。

2025-04-13 11:28:54 219

近十年的恶劣环境下激光数据质量增强算法相关论文集合

概要:近十年的恶劣环境下激光数据质量增强算法相关论文集合,涉及雨雪尘等恶劣天气的处理相关方案。以及一些相关的公开数据集介绍。 适用人群:自动驾驶、移动机器人以及激光点云算法工程师

2025-03-12

从2015-2024年的3D点云无序抓取位姿生成大合集

上传了43篇基于3D点云的无序抓取位姿生成文献,涵盖了从无序抓取起源到2024年最新的抓取技术论文,同时也包含了一些成熟、可落地的方案。

2024-10-23

快速聚类算法函数C++代码

该代码基于论文FEC: Fast Euclidean Clustering for Point Cloud Segmentation进行复现,效果与论文描述基本一致。 代码中基于pcl构建了kdtree,里面用了Eigen的数据结构,因此需要pcl库和Eigen库作为支撑。 代码是从本人私人项目库里面剥离出来的,只要库齐全,便可以使用。

2023-06-06

ArcEngine ppt

2016-08-22

Engine9.3 许可证

2016-08-22

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除