北大oj 2018 best cow

本文探讨了在给定非负整数序列中寻找平均数最大且长度不小于指定值的子段问题。通过二分查找和前缀和技巧,算法高效地解决了这一挑战。示例代码展示了如何实现这一解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一个长度为 n 的非负整数序列 A ,求一个平均数最大的,长度不小于 L 的子段。

输入格式
第一行用空格分隔的两个整数 n 和 L;
第二行为 n 个用空格隔开的非负整数,表示 Ai
输出格式
输出一个整数,表示答案的 1000 倍。不用四舍五入,直接输出。
样例
样例输入
10 6
6 4 2 10 3 8 5 9 4 1
样例输出
6500
数据范围与提示
1≤n≤10^5,0≤A​i​​≤2000。

这道题可以二分平均数的大小,然后在当前情况下把每一位都减去平均数,这样问题就变成了找一个非负的长度不小于L的子序列和,所以利用前i项和减去前面不小于L的最小前缀(并且是连续的)。
在这里插入图片描述

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int n,L;
double a[100003] ,b[100003],f[100003];
int main()
{
	 scanf("%d%d",&n,&L);
	 for(int i = 1;i <= n;i++)
	 {
	  scanf("%lf",&a[i]);
	 }
	 double x = 1e-5;//表示精度为10^-5
	 double l = -1e6,r = 1e6;
	 while(r - l > x)
	 {
		  double mid = (l + r) / 2;
		  for(int i = 1;i <= n;i++)
		  {
		   b[i] = a[i] - mid;
		  }
		  for(int i = 1;i <= n;i++)
		  {
		   f[i] = f[i - 1] + b[i];
		  }
			  double ans = -1e7;
			  double s = 1e7;
		  for(int i = L;i <= n;i++)
		  {
			   s = min(s,f[i - L]);//最小的前缀
			   ans = max(ans,f[i] - s);//不断更新期间和知道找到最大的 
		  }
		  if(ans >= 0)l = mid;
		  else r = mid; 
	 }
	 printf("%d",int(r * 1000));
	 return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值