GIS分析之采用最近邻法进行空间聚类

本文介绍了如何使用最近邻法(NNr)进行空间聚类,适用于冰淇淋车部署等需要考虑实际距离限制的场景。NNr通过建立距离矩阵,过滤不可接受距离并形成加权图,解决了DBSCAN和层次聚类在某些情况下可能导致的问题。举例展示了在R中实施NNr的过程,并与其他聚类方法进行了比较。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近从事一个空间分析项目,我需要一种将一系列点分配给集群的方法,其中集群中的所有点都必须在合理的步行距离内。为了使这一点更加具体,我将使用一个假设的场景。 Alexa 是一位富有进取心的企业家,他预测随着气候变化的日益临近,冰淇淋的需求将会增加。她计划在一个地区设立多辆冰淇淋车,但担心有些面包车可能会用完冰淇淋,因此她需要服务员足够快地在面包车之间转移冰淇淋,以免冰淇淋融化。

如果 Alexa 有聚类经验,她可能会立即想到的一种方法是基于密度的聚类或 DBSCAN,因为使用 DBSCAN,𝜺 参数控制新点与聚类之间允许的最大距离,以便将该点添加到聚类中。簇。然而,对于非常宽的集群,集群两端的两个点将距离太远,服务员将无法在他们的货车之间转移冰淇淋。因此,分层方法可能更合适。但是,由于层次聚类还依赖于第一次迭代后点和簇之间的距离,根据所选择的树切割,它要么产生太多的小簇,要么将许多货车聚集在一起,这些距离可能太远,并且无法提供中间立场冰淇淋业务所需的解决方案。

Alexa的业务需求,是让每辆货车属于多个集群;换句话说,这是一个连接所有距离足够近以运送冰淇淋的货车的关系结构。为了形成这种结构,应形成一个方阵 D,用于保存所有部署的货车对之间的距离,其中条目 D(i,j) 表示货车 i 和货车 j 之间的距离。矩阵 D,也称为距离(成本)矩阵,应根据空间的拓扑结构形成,可以是城市道路网络上的步行距离、测地线或简单的欧几里得距离。然后通过用零替换所有不可接受的距离来修改矩阵,也就

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gis收藏家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值