- PairRDD的创建
可以采用多种方式创建Pair RDD,其中一种主要的方式是使用map()函数来实现。
scala> val lines = sc.textFile("pathToFile")
scala> val pairRDD = lines.flatMap(line => line.split(" ")).map(word => (word, 1))
scala> pairRDD.foreach(println)
第二种创建方式:通过并行集合(数组)创建RDD
scala> val list = List("Hadoop","Spark","Hive")
scala> val rdd = sc.parallelize(list)
scala> pairRDD = rdd.map(word => (word,1))
scala> pairRDD.foreach(println)
常用的PairRDD转换操作
- reduceByKey(func) 使用func函数合并具有相同键的值
scala> pairRDD.reduceByKey((a,b)=>a+b).foreach(println)
- groupByKey(func), 对具有相同Key的Value进行分组,Key相同对Value生成一个列表
比如四个键值对:
scala> val map = Map("spark"->1, "spark"->2, "hadoop"->3, "hadoop"->5)
// 采用groupByKey()后得到的结果是
scala> ("spark",(1,2))和(“hadoop”,(3,5))
关于reduceByKey和groupByKey的区别
scala> val words = Array("one","two","three","three","three")
scala> val wordPairsRDD = sc.parallelize(words).map(word => (word,1))
scala> val wordCountsWithReduce = wordPairsRdd.reduceByKey(_+_)
scala> val wordCountsWithGroup = wordPairsRdd.groupByKey().map(t=>(t._1, t._2.sum))
// group得到的value在Iterable中,且group的通信开销大
- sortByKey()的功能是返回一个根据键值对排序的RDD(返回的一定是键值对)
关于sortByKey()和sortBy()
// sortByKey()
scala> val d1=sc.parallelize(Array(("c",8),("b",25),("c",17)))
scala> d1.reduceByKey(_+_).sortByKey(false).collect // 按照键值对的值进行降序排序
// sortBy()
scala> val d2=sc.parallelize(Array(("c",8),("b",25),("c",17)))
scala> d2.reduceByKey(_+_).sortBy(_._2, false).collect //按照键值对的Value进行排序
或者将key-value进行调换再排序
scala> d.map(t=>(t._2,t._1)).sortByKey(false).map(t=>t._2,t._1)
- mapValues(func):对键值对RDD中的每一个value都应用一个函数,但是key不会发生变化。
scala> pairRDD.mapValues(x => x+1)
// (hadoop, 1) -> (hadoop, 2)
- join:表示内连接。对于内连接,对于给定的两个输入数据集(K,V1)和(K,V2),只有在两个数据集中都存在的key才会被输出,最终得到一个(K, (V1,V2))类型的数据集(注:在关系型数据库中就能够体现出来重要性)
-
scala> val pairRDD1 = sc.parallelize(Array(("spark",1),("spark",2),("hadoop",3))) scala> val pairRDD2 = sc.parallelize(Array(("spark","fast"))) scala> pairRDD1.join(pairRDD2) scala> pairRDD1.join(pairRDD2).foreach(println) (spark,(1,fast)) (spark,(2,fast))