ROC曲线和评估指标分析:
-
ROC曲线(接收者操作特征曲线)表示的含义:
- ROC曲线显示了分类模型在不同阈值下的真阳性率(TPR)和假阳性率(FPR)之间的关系
- AUC(曲线下面积)值介于0到1之间,越接近1表示模型性能越好
- 提供的图像中有的模型AUC=0.11或0.01(性能较差),有的模型AUC=1.00(表现非常好)
-
评估指标解释:
- MAE(平均绝对误差):预测值与真实值之间绝对误差的平均值,值越小越好
- RMSE(均方根误差):预测值与真实值差值的平方的均值的平方根,对大误差更敏感,值越小越好
- R²(决定系数):表示模型解释数据变异性的比例,越接近1表示模型越好
- MAPE(平均绝对百分比误差):预测值与真实值之间的平均百分比误差,值越小越好
-
不同类型图表的含义:
- classification_plots(分类图):包括混淆矩阵和ROC曲线,评估分类模型性能
- regression_plots(回归图):展示预测值vs真实值和残差分布,评估回归模型预测精度
- time_series_plots(时间序列图):显示模型在时间维度上的预测表现和误差变化
-
模型性能对比:
- XGBoost模型:从评估结果看表现优异,MAE为0.050,R²接近1(0.9999)
- 线性回归、随机森林、LSTM和RNN模型:每个模型对不同类型的数据有不同的适用性
- 分类模型中LogisticRegression和OneClassSVM等:从ROC曲线看性能差异明显
-
图表中其他关键信息:
- 混淆矩阵:显示真阳性(73848)、假阳性(125976)、真阴性(2355)和假阴性(57021)的数量
- 预测值vs真实值图:理想情况下点应沿对角线分布
- 残差分布图:理想情况下应围绕0均匀分布,无明显模式
真阳性率(TPR)和假阳性率(FPR)的含义:
真阳性率(TPR):
也称为敏感度或召回率
表示所有实际正样本中被正确预测为正的比例
计算公式:TPR = TP/(TP+FN)
越高表示模型越能正确识别出实际的正样本
假阳性率(FPR):
表示所有实际负样本中被错误预测为正的比例
计算公式:FPR = FP/(FP+TN)
越低表示模型越不容易将负样本错误分类为正样本
在ROC曲线中,横轴为FPR,纵轴为TPR。理想的分类器应该具有高TPR和低FPR,即曲线应尽量靠近左上角。曲线下面积(AUC)越接近1,表示分类性能越好
通过这些图表和指标,可以全面评估不同机器学习模型在5G网络数据分析中的性能,帮助选择最适合特定任务的模型。