1.索引介绍
1.1.NORMAL(普通索引)
一张表可以创建多个普通索引,一个普通索引可以包含多个字段,允许数据重复,允许 NULL 值插入;
如果是CHAR,VARCHAR类型,length可以小于字段实际长度;如果是BLOB和TEXT类型,必须指定 length。
1.2.UNIQUE(唯一索引)
它与前面的普通索引类似,不同的就是:索引列的值必须唯一,但允许有NULL值。
如果是组合索引,则列值的组合必须唯一。
UNIQUE(唯一) 索引来保证数据的唯一性。
1.3.FULLTEXT(全文索引)
全文索引可以在VARCHAR或者TEXT类型的列上创建。
它可以通过CREATE TABLE命令创建,也可以通过ALTER TABLE或CREATE INDEX命令创建。
对于大规模的数据集,通过ALTER TABLE(或者CREATE INDEX)命令创建全文索引要比把记录插入带有全文索引的空表更快。
1.4.SPATIAL( 空间索引)
在最新发布的MySQL 5.7.4实验室版本中,InnoDB存储引擎新增了对于几何数据空间索引的支持。
在此之前,InnoDB将几何数据存储为BLOB(二进制大对象)数据,在空间数据上只能创建前缀索引,当涉及空间搜索时非常低效,尤其是在涉及复杂的几何数据时。
在大多数情况下,获得结果的唯一方式是扫描表。
新版本MySQL中,InnoDB支持空间索引,通过R树来实现,使得空间搜索变得高效。
InnoDB空间索引也支持MyISAM引擎现有的空间索引的语法,此外,InnoDB空间索引支持完整的事务特性以及隔离级别。
1.5.PRIMARY KEY(主键)
每个表只能定义一个主键。
主键值必须唯一标识表中的每一行,且不能为 NULL,即表中不可能存在有相同主键值的两行数据。这是唯一性原则。
一个字段名只能在联合主键字段表中出现一次。
联合主键不能包含不必要的多余字段。当把联合主键的某一字段删除后,如果剩下的字段构成的主键仍然满足唯一性原则,那么这个联合主键是不正确的。这是最小化原则
2.BTREE索引方法与HASH索引方法
Hash 索引结构的特殊性,其检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢?任何事物都是有两面性的,Hash 索引也一样,虽然 Hash 索引效率高,但是 Hash 索引本身由于其特殊性也带来了很多限制和弊端,主要有以下这些。
- Hash 索引仅仅能满足"=","IN"和"<=>"查询,不能使用范围查询。
由于 Hash 索引比较的是进行 Hash 运算之后的 Hash 值,所以它只能用于等值的过滤,不能用于基于范围的过滤,因为经过相应的 Hash 算法处理之后的 Hash 值的大小关系,并不能保证和Hash运算前完全一样。
- Hash 索引无法被用来避免数据的排序操作。
由于 Hash 索引中存放的是经过 Hash 计算之后的 Hash 值,而且Hash值的大小关系并不一定和 Hash 运算前的键值完全一样,所以数据库无法利用索引的数据来避免任何排序运算;
- Hash 索引不能利用部分索引键查询。
对于组合索引,Hash 索引在计算 Hash 值的时候是组合索引键合并后再一起计算 Hash 值,而不是单独计算 Hash 值,所以通过组合索引的前面一个或几个索引键进行查询的时候,Hash 索引也无法被利用。
- Hash 索引在任何时候都不能避免表扫描
前面已经知道,Hash 索引是将索引键通过 Hash 运算之后,将 Hash运算结果的 Hash 值和所对应的行指针信息存放于一个 Hash 表中,由于不同索引键存在相同 Hash 值,所以即使取满足某个 Hash 键值的数据的记录条数,也无法从 Hash 索引中直接完成查询,还是要通过访问表中的实际数据进行相应的比较,并得到相应的结果。
- Hash 索引遇到大量Hash值相等的情况后性能并不一定就会比B-Tree索引高。
对于选择性比较低的索引键,如果创建 Hash 索引,那么将会存在大量记录指针信息存于同一个 Hash 值相关联。这样要定位某一条记录时就会非常麻烦,会浪费多次表数据的访问,而造成整体性能低下。