简介
这一节内容主要对函数进行一定的了解,并且给出一些具体的拓展。
什么是函数,函数的性质有哪些,又有哪些常见的函数类型?
带着这些问题,我们看看下面的内容。
目录:
- 函数是什么?
- 如何表示函数?
- 函数的性质又包括什么?
函数是什么
函数,是数集到数集的映射。也可以概括为变量之间的依赖对应关系。我从集合映射的角度出发,来定义函数:
给定非空数集DDD,若映射f:D→Rf_:D\rightarrow Rf:D→R成立,则称其为定义在DDD上的函数。
通常记作y=f(x) (x∈D)y=f(x)\ (x\in D)y=f(x) (x∈D)。
其中,x为自变量,y为因变量,D为该函数的定义域,记作DfD_fDf。所有y所构成的集合为值域,记作RfR_fRf或者f(D)f(D)f(D)。
值得注意的是:
- 对于每个自变量,都有唯一的因变量与之对应,但反之不一定成立
- 函数三要素:定义域,对应关系,值域。定义域、对应关系均相同的函数是等价的。
- 自变量因变量函数符号可以从英文字母与希腊字母中任意选取
- 函数定义域要么从实际问题背景中来,要么就是使得函数表达式有意义的全体x的集合
- 函数图像是点集
- 当x可以对应多个y时,此时的函数不再为通常意义的函数,而是“多值函数”。可以通过分解多值函数的表达关系对其加以分析
如何表示函数?
通常是:图形法,表格法,解析法
图形法以函数图像表示函数。
表格法以有限个自变量列表展示。
解析法则通过表达式表示一个函数。
函数的性质?
函数的基本性质较为简单,这里为了引起对定义域的重视,我将函数的“域”作为一个性质来记录。但是这并不是严格意义的性质。
域
函数的域有值域和定义域。
其中定义域就是自变量的取值范围,值域就是因变量的取值范围,
每一个函数都具有定义域,并且都是实数集RRR的子集,这意味着有时候函数的定义域就是RRR。
定义域与对应关系是函数最核心的两部分,因此存在定义域优先原则。无论是什么题目,都应该满足定义域所对应的不等式。
例如:y=x2−1\sqrt {x^2-1}x2−1,定义域为[−1,1][-1,1][−1,1],对应不等式为−1<x<1-1<x<1−1<x<1,这个不等式在该函数的任何变化过程中都是成立的。
有界性
若对f(x)f(x)f(x)而言,存在M∈R+M\in R_+M∈