简介
这一章节介绍极限的性质、运算法则以及一些定理。
唯一性
在某个变化过程中极限若存在,则该极限必然只有一个。
证明过程
这对函数和数列均适用。
有界性
若函数收敛,则函数在变化过程中在趋向的领域内或者在某个无穷区间内有界。
例如:
对数列而言,变化过程趋于正无穷,可以直接忽略变化过程的领域,认为:
收敛数列必然有界。
值得注意的是,有界数列不一定收敛,如
a
n
=
(
−
1
)
n
a_n=(-1)^n
an=(−1)n这个数列是不收敛的。
对于趋于 x 0 x_0 x0的函数,则在 x 0 x_0 x0的领域内有界。
对于趋于无穷的函数,则
∃
ϵ
>
0
,
M
>
0
,
使
∣
f
(
x
)
−
A
∣
<
M
\exist\epsilon>0,M>0,使|f(x)-A|<M
∃ϵ>0,M>0,使∣f(x)−A∣<M
即
∣
f
(
x
)
∣
≤
∣
f
(
x
)
−
A
∣
+
∣
A
∣
<
M
+
∣
A
∣
|f(x)|≤|f(x)-A|+|A|<M+|A|
∣f(x)∣≤∣f(x)−A∣+∣A∣<M+∣A∣
由于M是任意实数,所以取M=1时,上述不等式仍然成立。
所以在
(
−
∞
,
−
1
)
∪
(
1
,
+
∞
)
(-\infty,-1)\cup(1,+\infty)
(−∞,−1)∪(1,+∞)这个无穷区间内函数有界。
注意,M取1只是为了表述方便,取任何大于0的正数都可以。
保号性
在趋向的领域内或者某个趋向的无穷区间内,极限与函数同号。
以数列为例:
lim
n
→
∞
a
n
=
A
>
0
\lim_{n\rightarrow \infty}a_n=A>0
limn→∞an=A>0,则存在
N
>
0
,
使
n
>
N
N>0,使n>N
N>0,使n>N时,
a
n
>
0
a_n>0
an>0
对于趋向某个常数的函数极限,则是在该常数领域内极限与函数值同号。
保号性推论
注意:
1. 下列公式结论均在趋向的领域或者某个趋向的无穷区间内才成立,并不是在所有区间都成立
2.每个结论内部涉及的变化过程,对于同一个结论内部的函数是相同的
3.下列结论对于函数和极限都适用,但请注意它们各自成立区间的不同
lim
f
(
x
)
=
a
,
lim
g
(
x
)
=
b
\lim f(x)=a,\lim g(x)=b
limf(x)=a,limg(x)=b
- a>0,则
3
a
2
>
f
(
x
)
>
a
2
>
0
\frac{3a}{2}>f(x)>\frac{a}{2}>0
23a>f(x)>2a>0
a<0,则 3 a 2 < f ( x ) < a 2 < 0 \frac{3a}{2}<f(x)<\frac{a}{2}<0 23a<f(x)<2a<0 - a<b,则
f
(
x
)
<
g
(
x
)
f(x)<g(x)
f(x)<g(x);
a>b,则 f ( x ) > g ( x ) f(x)>g(x) f(x)>g(x) - 若 f ( x ) ≥ g ( x ) f(x)≥g(x) f(x)≥g(x)恒成立,则 a ≥ b a≥b a≥b;
海涅定理
lim
x
→
x
0
f
(
x
)
=
A
\lim_{x\rightarrow x_0}f(x)=A
limx→x0f(x)=A的充分必要条件是:
对任意趋于
x
0
x_0
x0的数列
{
x
n
}
(
x
n
≠
x
0
)
\{x_n\}(x_n≠x_0)
{xn}(xn=x0),相应的函数值数列
{
f
(
x
n
)
}
\{f(x_n)\}
{f(xn)}满足
lim
n
→
∞
f
(
x
n
)
=
A
\lim_{n\rightarrow\infty}f(x_n)=A
limn→∞f(xn)=A。
换句话说:对任意数列
{
x
n
}
(
x
n
≠
x
0
)
\{x_n\}(x_n≠x_0)
{xn}(xn=x0),
lim
n
→
∞
x
n
=
x
0
\lim_{n\rightarrow\infty}x_n=x_0
limn→∞xn=x0,且
lim
n
→
∞
f
(
x
n
)
=
A
\lim_{n\rightarrow\infty}f(x_n)=A
limn→∞f(xn)=A。
极限的四则运算
若运算过程中涉及的所有极限都存在,则:
- lim f ( x ) ± g ( x ) = lim f ( x ) ± lim g ( x ) \lim f(x)±g(x)=\lim f(x)±\lim g(x) limf(x)±g(x)=limf(x)±limg(x)
- lim f ( x ) g ( x ) = lim f ( x ) lim g ( x ) \lim f(x)g(x)=\lim f(x)\lim g(x) limf(x)g(x)=limf(x)limg(x)
- lim f ( x ) g ( x ) = lim f ( x ) lim g ( x ) , lim g ( x ) ≠ 0 \lim\frac{f(x)}{g(x)}=\frac{\lim f(x)}{\lim g(x)},\lim g(x)≠0 limg(x)f(x)=limg(x)limf(x),limg(x)=0
法则1,2可以拓展到有限个的情况。
即
lim
f
1
(
x
)
+
f
2
(
x
)
+
.
.
.
+
f
n
(
x
)
=
lim
f
1
(
x
)
+
lim
f
2
(
x
)
+
.
.
.
+
lim
f
n
(
x
)
\lim f_1(x)+f_2(x)+...+fn(x)=\lim f_1(x)+\lim f_2(x)+...+\lim f_n(x)
limf1(x)+f2(x)+...+fn(x)=limf1(x)+limf2(x)+...+limfn(x)
lim
f
n
(
x
)
=
[
lim
f
(
x
)
]
n
\lim f^n(x)=[\lim f(x)]^n
limfn(x)=[limf(x)]n
另外通过四则运算法则,可以得到:
lim
x
→
∞
a
0
x
m
+
a
1
x
m
−
1
+
.
.
.
+
a
m
x
m
b
0
x
n
+
b
1
x
n
−
1
+
.
.
.
+
b
n
x
n
=
{
0
,
m
<
n
a
0
b
0
,
m
=
n
a
0
b
0
∞
,
m
>
n
\lim_{x\rightarrow\infty}\frac{a_0x^m+a_1x^{m-1}+...+a_mx^m}{b_0x^n+b_1x^{n-1}+...+b_nx^n}=\begin{cases} 0,\ m<n\\\frac{a_0}{b_0},\ m=n\\\frac{a_0}{b_0}\infty,\ m>n\end{cases}
limx→∞b0xn+b1xn−1+...+bnxna0xm+a1xm−1+...+amxm=⎩⎪⎨⎪⎧0, m<nb0a0, m=nb0a0∞, m>n
因此计算这种分子分母都是多项式的极限,只需要比较分子分母最高次幂的大小,并根据系数决定数值或者正负即可。
收敛准则
数列收敛的条件定理。
单调有界定理
单调有界数列必收敛。
柯西收敛准则
数列 { a n } \{a_n\} {an}收敛的充分必要条件是:
∀
ϵ
>
0
,
∃
N
>
0
\forall \epsilon>0,\exist N>0
∀ϵ>0,∃N>0,使得
∀
n
,
m
>
0
\forall n,m>0
∀n,m>0时,对任意
p
∈
N
p\in N
p∈N,有:
∣
a
m
−
a
n
∣
<
ϵ
|a_m-a_n|<\epsilon
∣am−an∣<ϵ
另一种表达形式:
∀
ϵ
>
0
,
\forall\epsilon>0,
∀ϵ>0,存在
N
>
0
N>0
N>0,使得当
n
>
N
n>N
n>N时,对任意
p
∈
N
p\in N
p∈N,有:
∣
a
n
+
p
−
a
n
∣
<
ϵ
|a_{n+p}-a_n|<\epsilon
∣an+p−an∣<ϵ
夹逼定理
若
g
(
x
)
≤
f
(
x
)
≤
h
(
x
)
lim
g
(
x
)
=
lim
h
(
x
)
=
a
g(x)≤f(x)≤h(x)\\ \lim g(x)=\lim h(x)=a
g(x)≤f(x)≤h(x)limg(x)=limh(x)=a,
则
lim
f
(
x
)
=
a
\lim f(x)=a
limf(x)=a
这对数列也成立.
注意,变化过程应当一致,此处省略.
另外只需要在自变量充分大或者在自变量的一个去心领域成立即可.