微积分Z2 J4 极限性质以及运算法则

本文详细探讨了微积分中极限的性质,包括唯一性、有界性、保号性及其推论。介绍了海涅定理、极限的四则运算规则以及收敛准则,如单调有界定理和柯西收敛准则。此外,还阐述了夹逼定理的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

这一章节介绍极限的性质、运算法则以及一些定理。

唯一性

在某个变化过程中极限若存在,则该极限必然只有一个。
证明过程

这对函数和数列均适用。

有界性

若函数收敛,则函数在变化过程中在趋向的领域内或者在某个无穷区间内有界。

例如:
对数列而言,变化过程趋于正无穷,可以直接忽略变化过程的领域,认为:
收敛数列必然有界
值得注意的是,有界数列不一定收敛,如 a n = ( − 1 ) n a_n=(-1)^n an=(1)n这个数列是不收敛的。

对于趋于 x 0 x_0 x0的函数,则在 x 0 x_0 x0的领域内有界。

对于趋于无穷的函数,则 ∃ ϵ > 0 , M > 0 , 使 ∣ f ( x ) − A ∣ < M \exist\epsilon>0,M>0,使|f(x)-A|<M ϵ>0,M>0,使f(x)A<M
∣ f ( x ) ∣ ≤ ∣ f ( x ) − A ∣ + ∣ A ∣ < M + ∣ A ∣ |f(x)|≤|f(x)-A|+|A|<M+|A| f(x)f(x)A+A<M+A
由于M是任意实数,所以取M=1时,上述不等式仍然成立。
所以在 ( − ∞ , − 1 ) ∪ ( 1 , + ∞ ) (-\infty,-1)\cup(1,+\infty) (,1)(1,+)这个无穷区间内函数有界。
注意,M取1只是为了表述方便,取任何大于0的正数都可以

保号性

在趋向的领域内或者某个趋向的无穷区间内,极限与函数同号。

以数列为例:
lim ⁡ n → ∞ a n = A > 0 \lim_{n\rightarrow \infty}a_n=A>0 limnan=A>0,则存在 N > 0 , 使 n > N N>0,使n>N N>0,使n>N时, a n > 0 a_n>0 an>0

对于趋向某个常数的函数极限,则是在该常数领域内极限与函数值同号。

保号性推论

注意:
1. 下列公式结论均在趋向的领域或者某个趋向的无穷区间内才成立,并不是在所有区间都成立
2.每个结论内部涉及的变化过程,对于同一个结论内部的函数是相同的
3.下列结论对于函数和极限都适用,但请注意它们各自成立区间的不同
lim ⁡ f ( x ) = a , lim ⁡ g ( x ) = b \lim f(x)=a,\lim g(x)=b limf(x)=a,limg(x)=b

  1. a>0,则 3 a 2 > f ( x ) > a 2 > 0 \frac{3a}{2}>f(x)>\frac{a}{2}>0 23a>f(x)>2a>0
    a<0,则 3 a 2 < f ( x ) < a 2 < 0 \frac{3a}{2}<f(x)<\frac{a}{2}<0 23a<f(x)<2a<0
  2. a<b,则 f ( x ) < g ( x ) f(x)<g(x) f(x)<g(x)
    a>b,则 f ( x ) > g ( x ) f(x)>g(x) f(x)>g(x)
  3. f ( x ) ≥ g ( x ) f(x)≥g(x) f(x)g(x)恒成立,则 a ≥ b a≥b ab;

海涅定理

lim ⁡ x → x 0 f ( x ) = A \lim_{x\rightarrow x_0}f(x)=A limxx0f(x)=A的充分必要条件是:
对任意趋于 x 0 x_0 x0的数列 { x n } ( x n ≠ x 0 ) \{x_n\}(x_n≠x_0) {xn}(xn=x0),相应的函数值数列 { f ( x n ) } \{f(x_n)\} {f(xn)}满足 lim ⁡ n → ∞ f ( x n ) = A \lim_{n\rightarrow\infty}f(x_n)=A limnf(xn)=A
换句话说:对任意数列 { x n } ( x n ≠ x 0 ) \{x_n\}(x_n≠x_0) {xn}(xn=x0), lim ⁡ n → ∞ x n = x 0 \lim_{n\rightarrow\infty}x_n=x_0 limnxn=x0,且 lim ⁡ n → ∞ f ( x n ) = A \lim_{n\rightarrow\infty}f(x_n)=A limnf(xn)=A

海涅定理的详细描述

极限的四则运算

若运算过程中涉及的所有极限都存在,则:

  1. lim ⁡ f ( x ) ± g ( x ) = lim ⁡ f ( x ) ± lim ⁡ g ( x ) \lim f(x)±g(x)=\lim f(x)±\lim g(x) limf(x)±g(x)=limf(x)±limg(x)
  2. lim ⁡ f ( x ) g ( x ) = lim ⁡ f ( x ) lim ⁡ g ( x ) \lim f(x)g(x)=\lim f(x)\lim g(x) limf(x)g(x)=limf(x)limg(x)
  3. lim ⁡ f ( x ) g ( x ) = lim ⁡ f ( x ) lim ⁡ g ( x ) , lim ⁡ g ( x ) ≠ 0 \lim\frac{f(x)}{g(x)}=\frac{\lim f(x)}{\lim g(x)},\lim g(x)≠0 limg(x)f(x)=limg(x)limf(x),limg(x)=0

法则1,2可以拓展到有限个的情况。
lim ⁡ f 1 ( x ) + f 2 ( x ) + . . . + f n ( x ) = lim ⁡ f 1 ( x ) + lim ⁡ f 2 ( x ) + . . . + lim ⁡ f n ( x ) \lim f_1(x)+f_2(x)+...+fn(x)=\lim f_1(x)+\lim f_2(x)+...+\lim f_n(x) limf1(x)+f2(x)+...+fn(x)=limf1(x)+limf2(x)+...+limfn(x)
lim ⁡ f n ( x ) = [ lim ⁡ f ( x ) ] n \lim f^n(x)=[\lim f(x)]^n limfn(x)=[limf(x)]n

另外通过四则运算法则,可以得到:
lim ⁡ x → ∞ a 0 x m + a 1 x m − 1 + . . . + a m x m b 0 x n + b 1 x n − 1 + . . . + b n x n = { 0 ,   m < n a 0 b 0 ,   m = n a 0 b 0 ∞ ,   m > n \lim_{x\rightarrow\infty}\frac{a_0x^m+a_1x^{m-1}+...+a_mx^m}{b_0x^n+b_1x^{n-1}+...+b_nx^n}=\begin{cases} 0,\ m<n\\\frac{a_0}{b_0},\ m=n\\\frac{a_0}{b_0}\infty,\ m>n\end{cases} limxb0xn+b1xn1+...+bnxna0xm+a1xm1+...+amxm=0, m<nb0a0, m=nb0a0, m>n
因此计算这种分子分母都是多项式的极限,只需要比较分子分母最高次幂的大小,并根据系数决定数值或者正负即可。

收敛准则

数列收敛的条件定理。

单调有界定理

单调有界数列必收敛。

柯西收敛准则

数列 { a n } \{a_n\} {an}收敛的充分必要条件是:

∀ ϵ > 0 , ∃ N > 0 \forall \epsilon>0,\exist N>0 ϵ>0,N>0,使得 ∀ n , m > 0 \forall n,m>0 n,m>0时,对任意 p ∈ N p\in N pN,有:
∣ a m − a n ∣ < ϵ |a_m-a_n|<\epsilon aman<ϵ
另一种表达形式:
∀ ϵ > 0 , \forall\epsilon>0, ϵ>0,存在 N > 0 N>0 N>0,使得当 n > N n>N n>N时,对任意 p ∈ N p\in N pN,有:
∣ a n + p − a n ∣ < ϵ |a_{n+p}-a_n|<\epsilon an+pan<ϵ

夹逼定理

g ( x ) ≤ f ( x ) ≤ h ( x ) lim ⁡ g ( x ) = lim ⁡ h ( x ) = a g(x)≤f(x)≤h(x)\\ \lim g(x)=\lim h(x)=a g(x)f(x)h(x)limg(x)=limh(x)=a,
lim ⁡ f ( x ) = a \lim f(x)=a limf(x)=a
这对数列也成立.

注意,变化过程应当一致,此处省略.
另外只需要在自变量充分大或者在自变量的一个去心领域成立即可.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值