❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!
🥦 微信公众号|搜一搜:蚝油菜花 🥦
🚀 快速阅读
- 架构设计:Mooncake采用以KVCache为中心的分布式架构,分离预填充和解码集群,优化资源利用。
- 性能提升:通过高效的KVCache缓存和资源优化,显著提升大模型推理的吞吐量和效率。
- 应用广泛:支持多种应用场景,包括自然语言处理、内容推荐系统和搜索引擎等。
正文(附运行示例)
Mooncake 是什么
Mooncake是由月之暗面Kimi联合清华大学等机构共同开源的大模型推理架构。该架构以KVCache为中心,通过分布式设计和资源优化,显著提升了大模型推理的吞吐量和效率,同时降低了算力开销。Mooncake在长上下文场景中表现出色,支持多种应用场景,如自然语言处理、内容推荐系统和搜索引擎等。
Mooncake的核心优势在于能显著提升大模型推理的吞吐量,降低算力开销,在保持服务延迟相关的服务级别目标(SLO)的同时,处理高负载场景。架构在长上下文场景中表现出色,能显著提高吞吐量,同时支持基于预测的早期拒绝策略,优化过载情况下的资源分配。
Mooncake 的主要功能
- 高效的大模型推理:通过分布式架构优化大模型的推理过程