LeetCode 1631. 最小体力消耗路径

这篇博客介绍了两种方法来解决寻找二维数组中从左上角到右下角的最小体力消耗路径问题。第一种方法是通过并查集,将所有边按代价排序,依次尝试连接,直到找到联通(0,0)和(m-1,n-1)的最小代价边。第二种方法是采用二分查找,通过深度优先搜索判断在一定体力消耗下能否从起点到达终点,逐步调整体力值找到最小值。这两种方法都巧妙地利用了数据结构和算法来优化问题的求解过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

java两种方法击败50% -> 100%!

并查集

将所有边从小到大排序,每次拿一条边连接两点,然后判断一下 ( 0 , 0 ) (0, 0) (0,0) ( m − 1 , n − 1 ) (m - 1, n - 1) (m1,n1)是否联通,若联通这次加入的边就是最小体力消耗。

class Solution {
    int[] p;
    int[][] edges;
    int m, n, N, len;
    int find(int u){
        if(p[u] != u) p[u] = find(p[u]);
        return p[u];
    }
    public int minimumEffortPath(int[][] heights) {
        int m = heights.length, n = heights[0].length;
        N = m * n;
        p = new int[N];
        for(int i = 0; i < N; i++) p[i] = i;
        len = 2 * N - (m + n);
        edges = new int[len][3];
        int k = 0;
        for(int i = 0; i < m; i++){
            for(int j = 0; j < n; j++){
                if(i > 0){
                    edges[k][0] = (i - 1) * n + j;
                    edges[k][1] = i * n + j;
                    edges[k++][2] = Math.abs(heights[i][j] - heights[i - 1][j]);
                }
                if(j > 0){
                    edges[k][0] = i * n + j - 1;
                    edges[k][1] = i * n + j;
                    edges[k++][2] = Math.abs(heights[i][j] - heights[i][j - 1]);
                }
            }
        }
        Arrays.sort(edges, (x, y) -> x[2] - y[2]);
        for(int i = 0; i < len; i++){
            int rootA = find(edges[i][0]), rootB = find(edges[i][1]);
            if(rootA != rootB){
                p[rootA] = rootB;
            }
            if(find(0) == find(N - 1)) return edges[i][2];
        }
        return 0;
    }
}

image.png

二分法

非常秀的方法,写了一个深搜版本的,高度值从 1 − 1 0 6 1 - 10^6 1106,体力消耗也是在这个范围内,每次取中间值判断一下不超过这个体力消耗能不能从左上到右下,如果能,就缩小体力,如果不能就增大体力,直到找到一个最小值。

class Solution {
    int m, n;
    int[][] heights;
    int[] dx = {0, 1, 0, -1}, dy = {1, 0, -1, 0};
    boolean[][] visit;
    boolean dfs(int x, int y, int len){
        visit[x][y] = true;
        if(x == m - 1 && y == n - 1) return true;
        int flag = 0;
        for(int i = 0; i < 4; i++){
            int xx = x + dx[i], yy = y + dy[i];
            if(xx >= 0 && xx < m && yy >= 0 && yy < n && !visit[xx][yy] && Math.abs(heights[xx][yy] - heights[x][y]) <= len && dfs(xx, yy, len))
                return true;
            else flag++;
        }
        if(flag == 4) return false;
        else return true;
    }
    public int minimumEffortPath(int[][] heights) {
        m = heights.length; n = heights[0].length;
        this.heights = heights;
        visit = new boolean[m][n];
        int l = 0, r = 1000010;
        while(l < r){
            int mid = l + r >> 1;
            for(boolean[] v : visit) Arrays.fill(v, false);
            if(dfs(0, 0, mid)) r = mid;
            else l = mid + 1;
        }
        return l;
    }
}

image.png

我的博客:https://me.csdn.net/qq_20067165?ref=miniprofile

### Dijkstra算法在LeetCode中的应用 #### 1631. 最小体力消耗路径 此题要求找到一条从左上角到右下角的路径,使得路径上的最大绝对高度差最小。可以利用Dijkstra算法来解决这个问题,在每次扩展节点时记录当前的最大高度差,并以此作为优先级队列的选择标准[^1]。 ```cpp class Solution { public: int minimumEffortPath(vector<vector<int>>& heights) { using PII = pair<int, int>; priority_queue<PII, vector<PII>, greater<>> pq; const int dirs[] = {-1, 0, 1, 0, -1}; int m = (int)heights.size(); int n = (int)heights[0].size(); vector<vector<bool>> visited(m, vector<bool>(n)); pq.emplace(0, 0); while (!pq.empty()) { auto [effort, code] = pq.top(); pq.pop(); int i = code / n, j = code % n; if (visited[i][j]) continue; if (i == m-1 && j == n-1) return effort; visited[i][j] = true; for (int d = 0; d < 4; ++d) { int r = i + dirs[d], c = j + dirs[d+1]; if (r >= 0 && r < m && c >= 0 && c < n && !visited[r][c]) pq.emplace(max(effort, abs(heights[i][j]-heights[r][c])), r*n+c); } } __builtin_unreachable(); } }; ``` #### 1368. 使网格至少有一个有效路径最小代价 该问题旨在寻找一种方法改变某些边的方向,从而让起点能够到达终点,目标是最小化修改的成本总和。这里同样采用Dijkstra变种的方式处理有向图中最短路的问题[^3]。 ```python import heapq from typing import List def minCost(self, grid: List[List[int]]) -> int: M,N=len(grid),len(grid[0]) dis=[[float('inf')]*N for _ in range(M)] q=[(0,0,0)] #(distance,x,y) while q: cur_dis,i,j=heapq.heappop(q) if not (0<=i<M and 0<=j<N):continue if dis[i][j]<=cur_dis:continue dis[i][j]=cur_dis directions={1:(0,1),2:(0,-1),3:(1,0),4:(-1,0)} next_directions=[directions.get(grid[i][j]),(-grid[i][j]%2*2+1,0),(0,-grid[i][j]%2*2+1)] for di,dj in next_directions+[v for k,v in directions.items()]: ni,nj=i+di,j+dj new_cost=(cur_dis+(ni!=i or nj!=j)) heapq.heappush(q,(new_cost,ni,nj)) return dis[-1][-1] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值