如何从0开始构建GPT模型?

OpenAI 推出强大的生成式预训练转换器 (GPT) 语言模型,为自然语言处理 (NLP) 开辟了新的领域。将 GPT 模型集成到虚拟助手和聊天机器人中可以增强它们的能力,这导致对 GPT 模型的需求激增。根据 Allied Market Research 发布的一份题为“全球 NLP 市场”的报告,2020 年全球 NLP 市场规模为 111 亿美元,预计到 2030 年将达到 3415 亿美元,2021 年至 2030 年的复合年增长率为 40.9%。有趣的是,对 GPT 模型的需求是这一增长的主要贡献者。

GPT 模型是由 OpenAI 团队创建的基于深度学习的语言模型的集合。在没有监督的情况下,这些模型可以执行各种 NLP 任务,如问答、文本蕴涵、文本摘要等。这些语言模型需要很少或不需要示例来理解任务。它们的性能与以监督方式训练的最先进模型相当,甚至更好。

OpenAI 的 GPT 系列从根本上改变了人工智能的格局。该系列的最新成员 GPT-4 进一步扩大了 AI 应用的视野。本文将带您踏上 GPT-4 创新领域的旅程。我们将深入研究其 GPT 模型的显着进步,同时探索这种最先进的模型如何重塑我们与不同领域的 AI 互动。

本文深入探讨了 GPT 模型的各个方面,并讨论了从头开始构建 GPT 模型所需的步骤。

目录

什么是GPT模型?

GPT 模型概述

GPT模型的用例

使用 NLP 理解人类语言

为用户界面设计生成内容

在计算机视觉系统中的图像识别应用

通过人工智能聊天机器人增强客户支持

通过准确的翻译弥合语言障碍

简化代码生成

通过个性化辅导改变教育

协助创意写作

GPT模型的工作机制

如何选择适合您需求的 GPT 模型?

构建 GPT 模型的先决条件

你的 AI 了吗?让我们合作吧。

如何创建GPT模型?分步指南

导入库

定义超参数

读取输入文件

识别文本中出现的唯一字符

创建映射

对输入数据进行编码

将数据拆分为训练集和验证集

生成用于训练 GPT 的批量输入和目标数据

使用预训练模型计算训练和验证数据集的平均损失

Transformers模型中定义自注意力机制的一个头

实现多头注意力机制

接下来我们需要添加 FeedFoward 模块

模型训练和文本生成

如何使用您的数据训练现有的 GPT 模型?

先决条件

设置主机

闪光关注

容器化设置

用法

配置

数据准备

训练和微调

构建 GPT 模型时要考虑的事项

消除偏见和毒性

改善幻觉

防止数据泄露

合并查询和操作

结尾


什么是GPT模型?

GPT 代表 Generative Pre-trained Transformer,这是 NLP 中的第一个通用语言模型。以前,语言模型仅针对文本生成、摘要或分类等单个任务而设计。GPT 是自然语言处理史上第一个通用语言模型,可用于各种 NLP 任务。现在让我们探讨一下 GPT 的三个组成部分,即生成、预训练和转换器,并了解它们的含义。

生成:生成模型是用于生成新数据的统计模型。这些模型可以学习数据集中变量之间的关系,以生成与原始数据集中的数据点类似的新数据点。

预训练:这些模型已经使用大型数据集进行了预训练,当难以训练新模型时可以使用该数据集。尽管预训练模型可能并不完美,但它可以节省时间并提高性能。

TransformerTransformer 模型是 2017 年创建的人工神经网络,是能够处理文本等顺序数据的最著名的深度学习模型。机器翻译和文本分类等许多任务都是使用 Transformer 模型执行的。

GPT 可以高精度地执行各种 NLP 任务,具体取决于它所训练的大型数据集及其数十亿参数的架构,使其能够理解数据中的逻辑连接。GPT 模型与最新版本的 GPT-3 一样,已经使用来自五个大型数据集的文本进行了预训练,包括 Common Crawl 和 WebText2。该语料库包含近一万亿个单词,允许 GPT-3 快速执行 NLP 任务,而无需任何数据示例。

GPT 模型概述

GPT 模型是 Generative Pretrained Transformer 的缩写,是高级深度学习模型,旨在生成类似人类的文本。这些由 OpenAI 开发的模型已经经历了几次迭代:GPT-1、GPT-2、GPT-3,以及最近的 GPT-4。

GPT-1 于 2018 年推出,是该系列中的第一款,它使用独特的 Transformer 架构极大地提高了语言生成能力。它由 1.17 亿个参数构建,并在 Common Crawl 和 BookCorpus 的数据集上进行了训练。GPT-1 可以在给定的上下文中生成流畅且连贯的语言。然而,它也有局限性,包括倾向于重复文本,以及复杂对话和长期依赖的困难。

OpenAI 随后在 2019 年发布了 GPT-2。这个模型要大得多,有 15 亿个参数,并且在更大、更多样化的数据集上进行训练。它的主要优势是能够生成逼真的文本序列和类似人类的响应。然而,GPT-2 在较长的段落中难以保持上下文和连贯性。

2020 年 GPT-3 的推出标志着一个巨大的飞跃。GPT-3 拥有惊人的 1750 亿个参数,在庞大的数据集上进行了训练,可以在各种任务中产生细微的响应。它可以生成文本、编写代码、创作艺术等,使其成为聊天机器人和语言翻译等许多应用程序的宝贵工具。然而,GPT-3 并不完美,并且存在偏见和不准确之处。

继 GPT-3 之后,OpenAI 推出了升级版 GPT-3.5,并最终于 2023 年 3 月发布了 GPT-4。GPT-4 是 OpenAI 最新、最先进的多模态语言模型。它可以生成更准确的语句并将图像作为输入进行处理,从而允许标题、分类和分析。GPT-4 还展示了创作歌曲或编写剧本等创作能力。它有两种变体,它们的上下文窗口大小不同:gpt-4-8K 和 gpt-4-32K。

GPT-4 能够理解复杂的提示并在各种任务中展示类似人类的表现,这是一个重大的飞跃。然而,与所有强大的工具一样,人们对潜在的滥用和道德影响存在合理的担忧。在探索 GPT 模型的功能和应用时,牢记这些因素至关重要。

GPT模型的用例

GPT 模型以其多功能应用而闻名,在各个领域提供了巨大的价值。在这里,我们将讨论三个关键用例:理解人类语言、UI 设计的内容生成和自然语言处理中的应用。

使用 NLP 理解人类语言

GPT 模型有助于增强计算机理解和处理人类语言的能力。这包括两个主要方面:

  • 人类语言理解 (HLU):HLU是指机器理解句子和短语含义的能力,有效地将人类知识翻译成机器可读的格式。这是使用深度神经网络或前馈神经网络实现的,涉及统计、概率、决策树、模糊集和强化学习技术的复杂组合。在这一领域开发模型具有挑战性,需要大量的专业知识、时间和资源。
  • 自然语言处理 (NLP):NLP专注于解释和分析书面或口头的人类语言。它涉及训练计算机理解语言,而不是使用预先设定的规则或指令对它们进行编程。NLP 的主要应用包括信息检索、分类、汇总、情感分析、文档生成和问答。它还在数据挖掘、情感分析和计算任务中发挥着关键作用。

为用户界面设计生成内容

GPT 模型可用于生成用户界面设计的内容。例如,它们可以帮助创建网页,用户只需点击几下即可上传各种形式的内容。这包括添加标题、标题、描述和 alt 标签等基本元素,以及合并按钮、测验和卡片等交互式组件。这种自动化减少了对额外开发资源和投资的需求。

在计算机视觉系统中的图像识别应用

GPT 模型不仅限于处理文本。当与计算机视觉系统结合使用时,它们可以执行图像识别等任务。这些系统可以识别和记住图像中的特定元素,如人脸、颜色和地标。GPT-3 凭借其 Transformer 架构,可以有效地处理此类任务。

通过人工智能聊天机器人增强客户支持

GPT 模型通过为 AI 聊天机器人提供动力,正在彻底改变客户支持。这些配备 GPT-4 的聊天机器人可以更精确地理解和响应客户查询。它们可以模拟类似人类的对话,提供详细的响应,并全天候提供即时支持。这通过提供快速、准确的响应来显着增强客户服务,从而提高客户满意度和忠诚度。

通过准确的翻译弥合语言障碍

语言翻译是 GPT-4 擅长的另一个领域。其先进的语言理解功能使其能够准确地翻译各种语言之间的文本。GPT-4 可以掌握不同语言的细微差别,并提供保留原始含义和上下文的翻译。此功能在促进跨文化交流和使全球受众可以访问信息方面非常有用。

简化代码生成

GPT-4 理解和生成编程语言代码的能力使其成为开发人员的宝贵工具。它可以根据开发人员的输入生成代码片段,从而显着加快编码过程并减少出错的机会。通过了解不同编程语言的上下文和细微差别,GPT-4 可以协助完成更复杂的编码任务,从而有助于更高效、更简化的软件开发。

通过个性化辅导改变教育

教育部门可以从 GPT-4 的实施中受益匪浅。它可以生成适合学习者需求的教育内容,提供个性化的辅导和学习帮助。从以简单的方式解释复杂的概念到为家庭作业提供支持,GPT-4 可以使学习更具吸引力和可访问性。它能够适应不同的学习风格和节奏,有助于提供更加个性化和有效的学习体验。

协助创意写作

在创意写作领域,GPT-4 可以成为宝贵的助手。它可以为作家提供创造性的建议,帮助克服作家的障碍,甚至生成整个故事或诗歌。通过了解背景并保持叙事的流畅性,GPT-4 可以制作出连贯且引人入胜的创意作品。对于作家来说,这可能是一个有价值的工具,可以激发创造力,提高生产力。

GPT模型的工作机制

GPT 是一种基于 Transformer 架构的 AI 语言模型,它是预训练的、生成式的、无监督的,能够在零/一/少镜头多任务设置中表现良好。它从 NLP 任务的一系列标记中预测下一个标记(字符序列的实例),它尚未经过训练。在只看到几个例子之后,它可以在某些基准测试中实现预期的结果,包括机器翻译、问答和完形填空任务。GPT 模型计算一个单词出现在文本中的可能性,因为它主要基于条件概率出现在另一个文本中。例如,在句子中,“玛格丽特正在组织车库销售......也许我们可以买那个旧的......”“椅子”这个词比“大象”这个词更合适。此外,转换器模型使用多个称为注意力块的单元,这些单元学习要关注文本序列的哪些部分。一个转换器可能有多个注意力块,每个注意力块学习语言的不同方面。

transformer有两个主要部分:一个编码主要对输入序列进行操作,解码器在训练期间对目标序列进行操作并预测下一个项目。例如,转换器可能会采用一系列英语单词,并预测正确翻译中的法语单词,直到它完成。

编码器确定应强调输入的哪些部分。例如,编码器可以读取类似“快速的棕色狐狸跳跃”之类的句子。然后,它计算嵌入矩阵(NLP中的嵌入允许具有相似含义的单词具有相似的表示形式)并将其转换为一系列注意力向量。现在,什么是注意力向量?您可以将 transformer 模型中的注意向量视为一个特殊的计算器,这有助于模型了解任何给定信息的哪些部分在做出决策时最重要。假设您在考试中被问到多个问题,您必须使用不同的信息片段来回答这些问题。注意力向量可帮助您选择最重要的信息来回答每个问题。它的工作方式与Transformers模型相同。

多头注意力块最初会产生这些注意力向量。然后,它们被归一化并传递到一个完全连接的层中。在传递到解码器之前,再次进行规范化。在训练过程中,编码器直接在目标输出序列上工作。假设目标输出是英语句子“The quick brown fox jumped”的法语翻译。解码器为句子的每个法语单词计算单独的嵌入向量。此外,位置编码器以正弦和余弦函数的形式应用。此外,还使用了掩蔽的注意力,这意味着使用法语句子的第一个单词,而所有其他单词都被掩蔽。这允许转换器学习预测下一个法语单词。然后,这些输出被添加并归一化,然后传递到另一个注意力块,该注意力块也接收编码器生成的注意力向量。

此外,GPT 模型采用一些数据压缩,同时消耗数百万个示例文本将单词转换为向量,这些向量只不过是数字表示。然后,语言模型将压缩文本解压缩为人类友好的句子。通过压缩和解压缩文本,可以提高模型的准确性。这也允许它计算每个单词的条件概率。GPT 模型可以在“几张照片”设置中表现良好,并响应以前见过的文本样本。它们只需要几个示例即可产生相关的响应,因为它们已经在许多文本样本上进行了训练。

此外,GPT 模型具有许多功能,例如生成前所未有的质量合成文本样本。如果使用输入启动模型,它将生成一个长延续。GPT 模型优于在维基百科、新闻和书籍等领域训练的其他语言模型,而无需使用特定领域的训练数据。GPT 仅从文本中学习语言任务,例如阅读理解、总结和问答,而无需特定于任务的训练数据。这些任务的分数(“分数”是指模型分配的数值,用于表示给定输出或结果的可能性或概率)不是最好的,但它们表明具有足够数据和计算的无监督技术可以使任务受益。

以下是 GPT 模型与其他语言模型的全面比较。

特征
GPT
BERT(来自Transformer 的双向编码器表示)
ELMo(
来自语言模型的嵌入)
预训练方法 单向语言建模 双向语言建模(掩码语言建模和下一句预测) 单向语言建模
预训练数据 来自互联网的大量文本 来自互联网的大量文本
训练一个自己的GPT模型通常需要以下步骤: 1. 数据收集:首先需要收集大量的文本数据,这些数据应该与你想要训练的GPT模型的任务相关。例如,如果你想要训练一个针对英文新闻文章的GPT模型,那么你需要收集大量的英文新闻文章。 2. 数据清洗和预处理:在训练GPT模型之前,必须对数据进行清洗和预处理。这可能包括去除停用词、标点符号和其他噪声数据。 3. 训练语言模型:使用已有的语言模型(如GPT-2或BERT)或从头开始构建一个语言模型。语言模型的训练通常使用神经网络,例如循环神经网络(RNN)或转换器(Transformer)架构。 4. 微调模型:微调模型是指使用特定任务的数据对模型进行进一步训练,以便模型可以更好地执行该任务。例如,如果你想要训练一个用于情感分析的GPT模型,那么你需要使用情感分析数据对模型进行微调。 5. 模型评估和优化:最后,你需要评估你的模型的性能,并对其进行优化。你可以使用各种评估指标(如困惑度或准确性)来评估模型的性能,并尝试使用不同的优化技术来提高模型的性能。 需要注意的是,训练一个GPT模型需要大量的数据和计算资源,因此这是一个非常耗时和昂贵的过程。如果你没有足够的经验和资源来训练自己的GPT模型,那么你可以考虑使用已有的语言模型并进行微调,以便模型可以更好地执行你的任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Meta.Qing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值