OpenAI 推出强大的生成式预训练转换器 (GPT) 语言模型,为自然语言处理 (NLP) 开辟了新的领域。将 GPT 模型集成到虚拟助手和聊天机器人中可以增强它们的能力,这导致对 GPT 模型的需求激增。根据 Allied Market Research 发布的一份题为“全球 NLP 市场”的报告,2020 年全球 NLP 市场规模为 111 亿美元,预计到 2030 年将达到 3415 亿美元,2021 年至 2030 年的复合年增长率为 40.9%。有趣的是,对 GPT 模型的需求是这一增长的主要贡献者。
GPT 模型是由 OpenAI 团队创建的基于深度学习的语言模型的集合。在没有监督的情况下,这些模型可以执行各种 NLP 任务,如问答、文本蕴涵、文本摘要等。这些语言模型需要很少或不需要示例来理解任务。它们的性能与以监督方式训练的最先进模型相当,甚至更好。
OpenAI 的 GPT 系列从根本上改变了人工智能的格局。该系列的最新成员 GPT-4 进一步扩大了 AI 应用的视野。本文将带您踏上 GPT-4 创新领域的旅程。我们将深入研究其 GPT 模型的显着进步,同时探索这种最先进的模型如何重塑我们与不同领域的 AI 互动。
本文深入探讨了 GPT 模型的各个方面,并讨论了从头开始构建 GPT 模型所需的步骤。
目录
在Transformers模型中定义自注意力机制的一个头
什么是GPT模型?
GPT 代表 Generative Pre-trained Transformer,这是 NLP 中的第一个通用语言模型。以前,语言模型仅针对文本生成、摘要或分类等单个任务而设计。GPT 是自然语言处理史上第一个通用语言模型,可用于各种 NLP 任务。现在让我们探讨一下 GPT 的三个组成部分,即生成、预训练和转换器,并了解它们的含义。
生成:生成模型是用于生成新数据的统计模型。这些模型可以学习数据集中变量之间的关系,以生成与原始数据集中的数据点类似的新数据点。
预训练:这些模型已经使用大型数据集进行了预训练,当难以训练新模型时可以使用该数据集。尽管预训练模型可能并不完美,但它可以节省时间并提高性能。
Transformer:Transformer 模型是 2017 年创建的人工神经网络,是能够处理文本等顺序数据的最著名的深度学习模型。机器翻译和文本分类等许多任务都是使用 Transformer 模型执行的。
GPT 可以高精度地执行各种 NLP 任务,具体取决于它所训练的大型数据集及其数十亿参数的架构,使其能够理解数据中的逻辑连接。GPT 模型与最新版本的 GPT-3 一样,已经使用来自五个大型数据集的文本进行了预训练,包括 Common Crawl 和 WebText2。该语料库包含近一万亿个单词,允许 GPT-3 快速执行 NLP 任务,而无需任何数据示例。
GPT 模型概述
GPT 模型是 Generative Pretrained Transformer 的缩写,是高级深度学习模型,旨在生成类似人类的文本。这些由 OpenAI 开发的模型已经经历了几次迭代:GPT-1、GPT-2、GPT-3,以及最近的 GPT-4。
GPT-1 于 2018 年推出,是该系列中的第一款,它使用独特的 Transformer 架构极大地提高了语言生成能力。它由 1.17 亿个参数构建,并在 Common Crawl 和 BookCorpus 的数据集上进行了训练。GPT-1 可以在给定的上下文中生成流畅且连贯的语言。然而,它也有局限性,包括倾向于重复文本,以及复杂对话和长期依赖的困难。
OpenAI 随后在 2019 年发布了 GPT-2。这个模型要大得多,有 15 亿个参数,并且在更大、更多样化的数据集上进行训练。它的主要优势是能够生成逼真的文本序列和类似人类的响应。然而,GPT-2 在较长的段落中难以保持上下文和连贯性。
2020 年 GPT-3 的推出标志着一个巨大的飞跃。GPT-3 拥有惊人的 1750 亿个参数,在庞大的数据集上进行了训练,可以在各种任务中产生细微的响应。它可以生成文本、编写代码、创作艺术等,使其成为聊天机器人和语言翻译等许多应用程序的宝贵工具。然而,GPT-3 并不完美,并且存在偏见和不准确之处。
继 GPT-3 之后,OpenAI 推出了升级版 GPT-3.5,并最终于 2023 年 3 月发布了 GPT-4。GPT-4 是 OpenAI 最新、最先进的多模态语言模型。它可以生成更准确的语句并将图像作为输入进行处理,从而允许标题、分类和分析。GPT-4 还展示了创作歌曲或编写剧本等创作能力。它有两种变体,它们的上下文窗口大小不同:gpt-4-8K 和 gpt-4-32K。
GPT-4 能够理解复杂的提示并在各种任务中展示类似人类的表现,这是一个重大的飞跃。然而,与所有强大的工具一样,人们对潜在的滥用和道德影响存在合理的担忧。在探索 GPT 模型的功能和应用时,牢记这些因素至关重要。
GPT模型的用例
GPT 模型以其多功能应用而闻名,在各个领域提供了巨大的价值。在这里,我们将讨论三个关键用例:理解人类语言、UI 设计的内容生成和自然语言处理中的应用。
使用 NLP 理解人类语言
GPT 模型有助于增强计算机理解和处理人类语言的能力。这包括两个主要方面:
- 人类语言理解 (HLU):HLU是指机器理解句子和短语含义的能力,有效地将人类知识翻译成机器可读的格式。这是使用深度神经网络或前馈神经网络实现的,涉及统计、概率、决策树、模糊集和强化学习技术的复杂组合。在这一领域开发模型具有挑战性,需要大量的专业知识、时间和资源。
- 自然语言处理 (NLP):NLP专注于解释和分析书面或口头的人类语言。它涉及训练计算机理解语言,而不是使用预先设定的规则或指令对它们进行编程。NLP 的主要应用包括信息检索、分类、汇总、情感分析、文档生成和问答。它还在数据挖掘、情感分析和计算任务中发挥着关键作用。
为用户界面设计生成内容
GPT 模型可用于生成用户界面设计的内容。例如,它们可以帮助创建网页,用户只需点击几下即可上传各种形式的内容。这包括添加标题、标题、描述和 alt 标签等基本元素,以及合并按钮、测验和卡片等交互式组件。这种自动化减少了对额外开发资源和投资的需求。
在计算机视觉系统中的图像识别应用
GPT 模型不仅限于处理文本。当与计算机视觉系统结合使用时,它们可以执行图像识别等任务。这些系统可以识别和记住图像中的特定元素,如人脸、颜色和地标。GPT-3 凭借其 Transformer 架构,可以有效地处理此类任务。
通过人工智能聊天机器人增强客户支持
GPT 模型通过为 AI 聊天机器人提供动力,正在彻底改变客户支持。这些配备 GPT-4 的聊天机器人可以更精确地理解和响应客户查询。它们可以模拟类似人类的对话,提供详细的响应,并全天候提供即时支持。这通过提供快速、准确的响应来显着增强客户服务,从而提高客户满意度和忠诚度。
通过准确的翻译弥合语言障碍
语言翻译是 GPT-4 擅长的另一个领域。其先进的语言理解功能使其能够准确地翻译各种语言之间的文本。GPT-4 可以掌握不同语言的细微差别,并提供保留原始含义和上下文的翻译。此功能在促进跨文化交流和使全球受众可以访问信息方面非常有用。
简化代码生成
GPT-4 理解和生成编程语言代码的能力使其成为开发人员的宝贵工具。它可以根据开发人员的输入生成代码片段,从而显着加快编码过程并减少出错的机会。通过了解不同编程语言的上下文和细微差别,GPT-4 可以协助完成更复杂的编码任务,从而有助于更高效、更简化的软件开发。
通过个性化辅导改变教育
教育部门可以从 GPT-4 的实施中受益匪浅。它可以生成适合学习者需求的教育内容,提供个性化的辅导和学习帮助。从以简单的方式解释复杂的概念到为家庭作业提供支持,GPT-4 可以使学习更具吸引力和可访问性。它能够适应不同的学习风格和节奏,有助于提供更加个性化和有效的学习体验。
协助创意写作
在创意写作领域,GPT-4 可以成为宝贵的助手。它可以为作家提供创造性的建议,帮助克服作家的障碍,甚至生成整个故事或诗歌。通过了解背景并保持叙事的流畅性,GPT-4 可以制作出连贯且引人入胜的创意作品。对于作家来说,这可能是一个有价值的工具,可以激发创造力,提高生产力。
GPT模型的工作机制
GPT 是一种基于 Transformer 架构的 AI 语言模型,它是预训练的、生成式的、无监督的,能够在零/一/少镜头多任务设置中表现良好。它从 NLP 任务的一系列标记中预测下一个标记(字符序列的实例),它尚未经过训练。在只看到几个例子之后,它可以在某些基准测试中实现预期的结果,包括机器翻译、问答和完形填空任务。GPT 模型计算一个单词出现在文本中的可能性,因为它主要基于条件概率出现在另一个文本中。例如,在句子中,“玛格丽特正在组织车库销售......也许我们可以买那个旧的......”“椅子”这个词比“大象”这个词更合适。此外,转换器模型使用多个称为注意力块的单元,这些单元学习要关注文本序列的哪些部分。一个转换器可能有多个注意力块,每个注意力块学习语言的不同方面。
transformer有两个主要部分:一个编码器主要对输入序列进行操作,解码器在训练期间对目标序列进行操作并预测下一个项目。例如,转换器可能会采用一系列英语单词,并预测正确翻译中的法语单词,直到它完成。
编码器确定应强调输入的哪些部分。例如,编码器可以读取类似“快速的棕色狐狸跳跃”之类的句子。然后,它计算嵌入矩阵(NLP中的嵌入允许具有相似含义的单词具有相似的表示形式)并将其转换为一系列注意力向量。现在,什么是注意力向量?您可以将 transformer 模型中的注意向量视为一个特殊的计算器,这有助于模型了解任何给定信息的哪些部分在做出决策时最重要。假设您在考试中被问到多个问题,您必须使用不同的信息片段来回答这些问题。注意力向量可帮助您选择最重要的信息来回答每个问题。它的工作方式与Transformers模型相同。
多头注意力块最初会产生这些注意力向量。然后,它们被归一化并传递到一个完全连接的层中。在传递到解码器之前,再次进行规范化。在训练过程中,编码器直接在目标输出序列上工作。假设目标输出是英语句子“The quick brown fox jumped”的法语翻译。解码器为句子的每个法语单词计算单独的嵌入向量。此外,位置编码器以正弦和余弦函数的形式应用。此外,还使用了掩蔽的注意力,这意味着使用法语句子的第一个单词,而所有其他单词都被掩蔽。这允许转换器学习预测下一个法语单词。然后,这些输出被添加并归一化,然后传递到另一个注意力块,该注意力块也接收编码器生成的注意力向量。
此外,GPT 模型采用一些数据压缩,同时消耗数百万个示例文本将单词转换为向量,这些向量只不过是数字表示。然后,语言模型将压缩文本解压缩为人类友好的句子。通过压缩和解压缩文本,可以提高模型的准确性。这也允许它计算每个单词的条件概率。GPT 模型可以在“几张照片”设置中表现良好,并响应以前见过的文本样本。它们只需要几个示例即可产生相关的响应,因为它们已经在许多文本样本上进行了训练。
此外,GPT 模型具有许多功能,例如生成前所未有的质量合成文本样本。如果使用输入启动模型,它将生成一个长延续。GPT 模型优于在维基百科、新闻和书籍等领域训练的其他语言模型,而无需使用特定领域的训练数据。GPT 仅从文本中学习语言任务,例如阅读理解、总结和问答,而无需特定于任务的训练数据。这些任务的分数(“分数”是指模型分配的数值,用于表示给定输出或结果的可能性或概率)不是最好的,但它们表明具有足够数据和计算的无监督技术可以使任务受益。
以下是 GPT 模型与其他语言模型的全面比较。
特征
|
GPT
|
BERT(来自Transformer
的双向编码器表示)
|
ELMo(
来自语言模型的嵌入)
|
---|---|---|---|
预训练方法 | 单向语言建模 | 双向语言建模(掩码语言建模和下一句预测) | 单向语言建模 |
预训练数据 | 来自互联网的大量文本 | 来自互联网的大量文本 |