支持大模型的小模型

https://www.arxiv.org/pdf/2408.12748 (SLM Meets LLM: Balancing Latency, Interpretability and Consistency in Hallucination Detection )

平衡会话 AI 幻觉检测中的延迟、可解释性和一致性

介绍

大型语言模型(llm)在实时任务(如同步的会 话 ui)中与延迟作斗争。

当额外的开销增加时,比如检查幻觉,那么这个问题就会加剧。 因此,微软研究院提出了一个框架,利用小语言模型(SLM)作为初始检测器, LLM 作为约束推理器,为任何检测到的幻觉生成详细的解释。 目的是通过引入将 llm 生成的解释与 SLM 决策相结合的提示技术,优化实时、可解释的幻觉检测。

考虑到上图,它展示了用 LLM 作为约束推理器的幻觉检测……

初始检测:将grounding sources和假设对输入到小型语言模型(SLM)分类器中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值