Python第二十课:生成对抗网络 | AI创造力觉醒

🎯 本节目标

  1. 理解生成器与判别器的博弈论原理
  2. 掌握DCGAN与StyleGAN的核心架构差异
  3. 实现AI绘画系统生成二次元角色
  4. 学习梯度惩罚与谱归一化等稳定技巧
  5. 探索GAN在艺术创作中的伦理边界

一、GAN基础理论(艺术赝品对决)

1. 双角色博弈模型
角色 职责 生活比喻
生成器(G) 制造逼真数据 天才赝品画家
判别器(D) 区分真实与生成数据 艺术品鉴定专家
2. 损失函数:博弈记分牌
# GAN的对抗损失(简化公式)  
G_loss 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值