推荐系统实验指标置信度:p值核心原理与工程应用指南



一、推荐系统实验中的置信度困境

在推荐系统AB实验中,经常出现以下矛盾场景:

  • 实验组CTR提升1.2%,但次日回退至基线水平
  • GMV指标p值0.04(<0.05),但用户留存率显著下降
  • 离线AUC提升3%,线上实验却无显著变化

这些现象本质是实验指标置信度问题——如何判断观测到的指标变化是真实效应还是随机波动?统计学中的**p值(P-value)**是解决这一问题的核心工具,本文从原理、计算、应用三方面解析其在推荐系统中的实践方法。

二、p值核心原理:从假设检验到推荐场景适配

2.1 基础概念与数学定义

p值:在原假设(H₀:实验组与对照组无差异)成立的前提下,观测到当前或更极端结果的概率。

  • 取值范围:[0,1],越小表示结果越不可能由随机波动导致
  • 显著性水平:常用α=0.05(p<0.05拒绝H₀,认为结果显著)

推荐系统核心假设

  • H₀:实验组与对照组的指标均值/比率无差异(μ₁=μ₂)
  • H₁:实验组指标优于对照组(μ₁>μ₂,单尾检验)

2.2 通俗版本

为了更容易理解,我们先抛开公式,用一个生

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

进一步有进一步的欢喜

您的鼓励将是我创作的最大动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值