进一步有进一步的欢喜
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
推荐系统中 Label 回收机制之【时间窗口设计】
在推荐系统、实时计算和流量控制等领域,时间窗口大小的确定是影响系统效果的核心问题。合理的时间窗口需在数据时效性与模型效果之间找到平衡,本文从业务需求、数据特性、算法模型、工程实现四大维度构建分析框架,结合行业实践给出可落地的策略。原创 2025-04-29 21:40:34 · 735 阅读 · 0 评论 -
从 BERT 到 GPT:Encoder 的 “全局视野” 如何喂饱 Decoder 的 “逐词纠结”
在深度学习领域,Encoder(编码器)与Decoder(解码器)是序列处理任务的核心组件,二者通过不同的注意力机制设计,形成了“理解-生成”的黄金搭档。本文从基础功能、注意力机制差异、典型案例及工程实践等维度,解析这对架构的核心设计逻辑。原创 2025-04-29 22:04:28 · 1048 阅读 · 0 评论 -
逐词蹦字,步步为营:如何理解 Decoder 和 GPT 是自回归的?
在深度学习模型中,Decoder(解码器)和GPT的自回归特性是理解其生成机制的核心。本文将从基础概念、技术原理、典型案例三方面拆解,帮助读者清晰理解二者的自回归本质。原创 2025-04-29 22:34:12 · 1299 阅读 · 0 评论 -
告别低效融合!NOVA 机制如何让序列推荐 “如虎添翼”
“Non-invasive Self-attention for Side Information Fusion in Sequential Recommendation”由香港大学和华为诺亚方舟实验室的学者发表于2021年。这篇论文聚焦于序列推荐系统,提出非侵入式自注意力(NOVA)机制和NOVA-BERT框架,有效融合辅助信息,提升推荐性能。原创 2025-04-04 18:54:18 · 1021 阅读 · 0 评论 -
InfoNCE:在特征空间中,正样本和负样本的拔河比赛 —— 从对比学习到多模态融合的全解析
在无监督学习与自监督学习的技术版图中,InfoNCE(Noise-Contrastive Estimation for Neural Networks)损失函数如同基石般重要。它通过对比正、负样本的巧妙设计,让模型在缺乏标注数据的情况下,能够自主学习到数据的语义结构和判别性特征。本文将从基础原理、数学推导、代码实现到实际应用场景进行拆解,帮助大家深入理解对比学习技术大图。原创 2025-04-17 08:57:23 · 1304 阅读 · 0 评论 -
KL散度(Kullback-Leibler Divergence):概率分布差异的量化利器
KL散度(Kullback-Leibler Divergence),又称相对熵(Relative Entropy),是信息论中用于衡量两个概率分布之间差异的核心工具原创 2025-05-07 23:29:01 · 288 阅读 · 0 评论 -
中心极限定理:以番茄为引串联 Z、卡方、t 、F 分布
在统计学的理论架构与实际应用中,中心极限定理占据着核心地位。它搭建起概率论与数理统计学之间的桥梁,为基于样本数据推断总体特征提供了坚实的理论基础。原创 2025-01-12 00:47:13 · 1145 阅读 · 0 评论 -
【论文精读】Reformer:高效Transformer如何突破长序列处理瓶颈?
Reformer针对传统Transformer长序列处理瓶颈,引入局部敏感哈希注意力(降复杂度至O(LlogL))、可逆残差网络(大幅节省内存)等技术。实验显示其精度接近传统模型,速度和内存效率显著提升,适用于长文本、推荐系统等场景,推动Transformer高效化。原创 2025-04-23 23:20:16 · 875 阅读 · 0 评论 -
推荐系统的注意力进化:从 Self-Attention 到 Target-Attention
在深度学习和人工智能蓬勃发展的当下,推荐系统已成为众多互联网产品的核心竞争力。而注意力机制,作为推荐系统中的关键技术,正发挥着举足轻重的作用。本文将深入探讨注意力机制及其在推荐系统中的多种变体,如Self - Attention、Target - Attention和双层Attention。原创 2025-04-05 15:37:41 · 1363 阅读 · 0 评论 -
推荐系统在线离线打分不一致:核心原因与全链路解决方案
在推荐系统研发中,"离线AUC暴涨3%,线上CTR却暴跌5%"是令算法工程师头疼的典型问题。这种打分不一致本质上是离线评估与线上真实场景的「认知鸿沟」,可能导致算法迭代方向迷失。本文结合实际工程经验,从特征、训练、评估等维度拆解核心原因,并给出可落地的解决方案。原创 2025-04-29 21:19:29 · 1288 阅读 · 0 评论 -
图解多头注意力机制:维度变化一镜到底
多头注意力(Multi-Head Attention)是Transformer模型的核心组件,其核心思想是通过 并行处理多个子空间 来捕捉序列中不同位置间的复杂依赖关系。原创 2025-03-16 23:59:41 · 1113 阅读 · 0 评论 -
一文读懂 Faiss 乘积量化(PQ)索引技术
PQ索引通过牺牲少量精度换取显著的内存和计算效率提升,是处理十亿级向量检索的核心技术。实际应用中需根据数据特征精细调节参数,结合业务场景选择合适的变种索引原创 2025-01-31 21:26:41 · 1002 阅读 · 0 评论 -
一文读懂 Faiss 倒排文件(IVF)索引技术
Faiss 中的 IVF 索引通过聚类的思想,有效地解决了大规模高维向量相似性搜索的效率问题。通过合理的参数调优和优化策略,如与其他索引结合、多级聚类和动态更新等,IVF 索引可以在不同的应用场景中发挥出最佳性能。尽管面临数据动态性、高维数据等挑战,但随着技术的不断发展,IVF 索引有望与新兴技术融合,不断拓展其应用领域和提升性能。原创 2025-01-31 21:55:43 · 1845 阅读 · 0 评论 -
一文读懂 Faiss:开启高维向量高效检索的大门
Faiss(Facebook AI Similarity Search),如同一位身怀绝技的武林高手,为高维向量相似性搜索带来了高效的解决方案。本文将以清晰的章节结构、完整的内容和严谨的逻辑,深入剖析 Faiss,带你领略其独特的魅力。原创 2025-01-31 22:04:31 · 3928 阅读 · 0 评论 -
一文读懂局部敏感哈希:原理、应用与实践
在当今数据呈爆炸式增长的时代,从海量的高维数据中快速找出相似数据,成为了计算机视觉、自然语言处理等众多领域亟待解决的难题。而局部敏感哈希(Locality - Sensitive Hashing,LSH) ,就像一把神奇的钥匙,为我们打开了高效解决这一问题的大门。接下来,就让我们一同深入探索LSH的奥秘吧!原创 2025-04-19 00:45:36 · 1237 阅读 · 0 评论 -
工业级向量检索核心技术:IVF-PQ原理与全流程解析
在大规模高维向量检索场景中,IVF-PQ(倒排索引结合乘积量化)凭借“粗筛范围+细算距离”的双重加速策略,成为核心解决方案。本文将深入解析其原理与全流程,助力开发者掌握这一关键技术。原创 2025-04-19 14:43:55 · 781 阅读 · 0 评论 -
原始信息再加工:一文读懂倒排索引
本文深入探讨了倒排索引技术,这项技术是现代搜索引擎高效运作的基础。文章回顾了其发展历程,详细解释了核心原理和公式,并通过具体案例帮助理解。同时介绍了它在搜索引擎、电商推荐系统等多个领域的应用,展示了其在大数据时代的重要性。原创 2024-12-31 16:04:43 · 762 阅读 · 0 评论 -
向量召回:构建、索引与独特优势
向量召回通过其严谨的构建和索引过程,以及在语义与个性化召回之外的独特优势,为信息检索和推荐系统提供了强有力的支持。原创 2025-01-17 00:43:12 · 656 阅读 · 0 评论 -
一文读懂 Simhash 算法:数据相似性的 “超级解码器”
在当今数字化时代,数据如潮水般涌来,尤其是文本数据。从海量的网页内容到每天数以亿计的邮件,从新闻资讯到社交媒体的各种帖子,如何高效处理和分析这些文本数据成为了关键问题。其中,判断文本的相似性是一个核心需求,而 Simhash 算法就在这样的背景下应运而生,它为大规模文本相似性判断提供了高效的解决方案。原创 2025-01-30 11:14:05 · 1736 阅读 · 0 评论 -
局部敏感哈希实践:以四维空间中随机投影法为例
本文以四维向量为例,实践局部敏感哈希(LSH)技术,通过随机投影法将高维向量映射到低维空间,利用哈希桶聚集相似向量,再通过二进制码与汉明距离量化相似度(如近邻向量汉明距离仅1)。结合约翰逊-林登施特劳斯引理等数学原理,解析投影生成、分桶规则、代码实现及参数调优,展现LSH如何将高维数据相似性搜索复杂度从 O(N) 降至高效可计算范围,为图像检索、推荐系统等提供关键技术支持。原创 2025-04-19 01:16:08 · 758 阅读 · 0 评论 -
搜索个性化检索:流程、优势及独特价值
搜索个性化检索通过独特的流程和显著优势,在语义召回的基础上,进一步解决了满足用户个体差异、应对信息过载、提升用户体验和挖掘潜在需求等问题,为用户带来更优质、高效、个性化的搜索体验原创 2025-01-17 00:35:13 · 722 阅读 · 0 评论 -
个性化检索中倒排索引与正排索引的对比分析
倒排索引和正排索引在个性化检索中各有优劣,适用于不同场景。在实际应用中,应根据业务需求、数据特点和性能要求等因素,合理选择或结合使用这两种索引方式,以实现更高效、精准的个性化检索,提升用户体验。原创 2025-01-17 00:37:49 · 693 阅读 · 0 评论 -
语义检索:流程、构建与查询过程全解析
在信息爆炸的时代,传统的关键词检索方式已难以满足用户对精准信息的需求,语义检索应运而生。它致力于理解用户查询的语义内涵,从而提供更符合用户意图的检索结果。本文将详细阐述语义检索的基本流程,以及其构建过程和一次检索请求的查询过程。原创 2025-01-17 00:28:55 · 1325 阅读 · 0 评论 -
浅析分词模块中因上下文不一致导致的 query 与 doc 匹配问题及解决策略
因上下文不一致导致的query与doc在term上不完全匹配问题,给自然语言处理带来了诸多挑战。但通过运用上述基于语义理解、机器学习算法的解决策略,能够有效提升分词的准确性和上下文适应性,减少匹配问题,从而提高信息检索等自然语言处理系统的性能。原创 2025-01-17 00:31:44 · 865 阅读 · 0 评论 -
Query改写召回:策略、问题解决与优势对比
Query改写召回通过多种策略实现对用户查询的有效改写,解决了用户表达多样性等问题,与在Doc侧加Tag相比,具有灵活性高、能精准捕捉用户实时意图、数据标注成本低和适应性强等显著优势,在信息检索中具有重要的应用价值和广阔的发展前景。原创 2025-01-17 00:34:01 · 931 阅读 · 0 评论 -
搜索技术中的关键问题探讨
在信息爆炸的时代,搜索技术作为连接用户与海量信息的桥梁,其重要性不言而喻。从召回相关信息到对结果进行排序,再到处理一系列衍生问题,搜索技术涵盖了多个关键环节。本文将深入剖析搜索技术中常见的召回、排序以及其他相关重要问题,旨在为该领域的研究与实践提供一个整体的 Framework 视角~原创 2025-01-16 23:13:36 · 1139 阅读 · 0 评论 -
向量召回:如何确保与query相关性及处理不相关案例
在信息检索和推荐系统中,向量召回作为一种重要的技术手段,通过将用户查询(query)和各类信息转化为向量形式,依据向量间的相似度来召回相关内容。然而,如何保证向量召回与query的相关性,以及当遇到不相关案例时该如何处理,是提升向量召回效果的关键所在。原创 2025-01-17 00:26:18 · 796 阅读 · 0 评论 -
模型蒸馏:深度学习界的 “师徒传承”
随着深度学习的发展,模型的规模和复杂性不断增加,这虽然带来了出色的性能,但也带来了高计算资源需求的问题,使得在一些资源受限的设备(如移动设备、边缘计算设备)上的部署变得困难。模型蒸馏技术应运而生,为解决这一问题提供了有效方案。原创 2025-01-16 00:47:06 · 1719 阅读 · 0 评论 -
无监督学习:自编码器(AutoEncoder)
自编码器作为一种强大的特征学习方法,已经经历了从简单到复杂的发展历程。本文综述了多种类型的自编码器及其演进过程,强调了它们在数据降维、图像处理、噪声去除及生成模型等方面的关键作用。随着技术的进步,自编码器将继续在人工智能领域扮演重要角色,推动着机器学习算法向着更加智能的方向前进。原创 2025-01-05 23:06:26 · 1577 阅读 · 0 评论 -
一文搞懂变分自编码器:融合概率与深度网络的创新模型
在深度学习不断发展的浪潮中,变分自编码器(Variational Autoencoder,VAE)作为一种强大的生成模型,备受关注。它巧妙地结合了深度学习和变分推断的方法,不仅能够对数据进行高效的编码与解码,还具备生成全新数据样本的能力,在图像生成、数据压缩、异常检测等诸多领域都有着广泛且重要的应用。本文将全面深入地探讨变分自编码器的原理、代码实现、常见应用场景以及使用时的注意事项,帮助读者系统地掌握这一前沿技术。原创 2025-02-01 15:39:57 · 1005 阅读 · 0 评论 -
探秘玻尔兹曼分布:解锁微观粒子能量分布的神奇密码
玻尔兹曼分布是统计物理学中的核心理论之一,它深刻地揭示了热平衡系统中粒子在不同能量状态下的分布规律。本文将全面介绍玻尔兹曼分布,包括其提出背景、数学推导、物理意义、影响因素、应用领域以及历史地位,旨在深入剖析这一重要理论,展现其在物理学乃至整个科学领域的关键作用。原创 2025-02-01 14:19:08 · 1140 阅读 · 0 评论 -
受限玻尔兹曼机:原理、实现、与神经网络对比及应用
受限玻尔兹曼机(Restricted Boltzmann Machine, RBM)是一种强大的生成式随机神经网络,在机器学习和深度学习领域有着广泛的应用。本文将深入探讨受限玻尔兹曼机的原理,详细介绍其与玻尔兹曼分布的关系、“受限”的含义以及对比散度算法这一核心训练方法。同时给出使用 Python 和 NumPy 库实现受限玻尔兹曼机的具体代码。此外,还会将受限玻尔兹曼机与传统神经网络从原理、训练方式、损失函数、优缺点和适用场景等角度进行详细对比,最后通过手写数字识别的示例展示其应用。原创 2025-02-01 14:37:56 · 985 阅读 · 0 评论 -
解锁维特比算法:探寻复杂系统的最优解密码
维特比算法以其强大的功能和广泛的适用性,在众多领域发挥着不可替代的作用。随着技术的不断发展和数据量的不断增长,相信它将在更多领域展现出独特的价值,为解决复杂问题提供高效的解决方案。未来,维特比算法可能会与其他先进技术(如深度学习、量子计算等)相结合,进一步拓展其应用范围和提升性能,为我们的生活和社会发展带来更多的惊喜和变革。原创 2025-01-31 23:35:25 · 1801 阅读 · 0 评论 -
屏幕轻触间:触摸交互从 “感知” 到 “智算” 的隐秘路径
在移动智能设备与触摸交互技术深度融合的当下,当我们的手指轻触手机屏幕,一系列复杂且精妙的技术流程便瞬间启动。这一过程涵盖硬件层、驱动层、操作系统层、应用层,甚至延伸到后端的数据处理与算法优化。各层之间紧密协作,共同构建起一个完整的技术链条,为用户带来流畅的交互体验,并为数据的收集、分析和算法的优化提供支持。接下来,我们将全面且深入地剖析这一完整的技术流程。原创 2025-01-15 23:58:22 · 2059 阅读 · 0 评论 -
新召回路的增量保证与多路召回的后链路合并策略
在信息检索和推荐系统不断发展的过程中,新召回路的引入以及多路召回的后链路合并是提升系统性能的重要举措。如何确保新召回路能带来增量,以及怎样在后链路合理地合并多路召回的结果,成为了关键问题。原创 2025-01-17 00:45:08 · 616 阅读 · 0 评论 -
布隆过滤器,凭什么在数据领域 “封神”?
在计算机科学的广袤领域中,数据结构宛如基石,支撑着各类程序和系统的高效运行。从简单的数组到复杂的图结构,每种数据结构都有其独特的用途和优势。而布隆过滤器(Bloom Filter),作为一种在大规模数据处理场景中大放异彩的数据结构,正逐渐成为开发者们不可或缺的工具。理解布隆过滤器的原理和应用,不仅能帮助开发者优化现有系统,还能为解决复杂的数据处理问题提供新思路。原创 2025-01-30 10:34:28 · 957 阅读 · 0 评论 -
一文读懂知识图谱:让数据 “牵线搭桥” 的神器
在信息爆炸的时代,我们每天都被海量的数据所包围。从社交媒体上的动态、新闻报道到科研文献,数据的规模和复杂度呈指数级增长。然而,这些数据大多是零散、无序的,如何从这些纷繁复杂的数据中提取有价值的信息,构建起对世界的全面认知,成为了一个亟待解决的问题。知识图谱应运而生,它作为一种强大的知识表示和管理工具,为我们提供了一种有效的方式来整合、组织和理解数据,揭示数据背后的关联和规律。原创 2025-02-02 23:01:51 · 1911 阅读 · 0 评论 -
一文带你看透 kd 树的 “魔法” 世界
kd 树作为一种强大的数据结构,为我们处理高维数据提供了高效的解决方案。从基本概念到构建过程,从应用场景到构建注意事项,我们深入了解了 kd 树的方方面面。通过合理地构建和应用 kd 树,我们能够在众多领域中提高数据处理效率,解决实际问题。原创 2025-01-30 12:02:59 · 1004 阅读 · 0 评论 -
探索与利用的艺术:UCB1 算法
本文详细介绍了UCB1(Upper Confidence Bound 1)算法,一种用于多臂老虎机问题的高效决策方法。通过平衡探索和利用,UCB1算法在在线广告、推荐系统、临床试验和机器人任务规划等场景中展现了强大的应用潜力。文章不仅解释了UCB1的核心思想和步骤,还通过具体案例展示了其在实际应用中的使用方法和显著效果,帮助读者全面理解这一智能决策工具。原创 2024-12-29 23:42:06 · 1079 阅读 · 0 评论 -
深度解析统计学四大分布:Z、卡方、t 与 F 的关联与应用
在统计学领域,Z分布、卡方分布、t分布与F分布是极为重要的概率分布,它们在数据的分析与推断中发挥着关键作用。无论是科学研究、质量控制,还是社会调查等场景,这些分布都为理解和解读数据提供了有力工具。本文将深入探讨t分布与F分布的产生背景、构造思路、特点及适用场景,并与Z分布、卡方分布进行对比,辅以具体例子,助力读者全面掌握这些重要概念。原创 2025-01-12 00:16:18 · 1453 阅读 · 0 评论