- 博客(8)
- 收藏
- 关注
原创 无人驾驶——激光雷达篇
无人驾驶技术是多项技术的集成,包括传感器、定位与深度学习、高精地图、路径规划、障碍物检测与规避、机械控制、系统集成与优化、能耗与散热管理等。无人车系统的感知端由不同的传感器组成,其中包括GPS(用于定位)、激光雷达(用于定位及障碍物检测)、RGB照相机(用于深度学习的物体识别),以及定位辅助。在传感器采集到信息后,我们就进入了感知阶段,主要工作是定位与物体识别。在这个阶段,可以用数学的方法,比如卡尔曼滤波与粒子滤波等算法,对各种传感器信息进行融合,并得出当前最大概率的位置。
2022-10-30 19:27:18
3731
2
原创 无人驾驶系列——概述
自动驾驶:某些情况下可以加入人的参与与监督。无人驾驶:完全不依赖于人的行为,是为更高级的自动驾驶摄像头:广泛用于物体识别和物体追踪场景,比如车道线检测、交通灯识别等,一般无人驾驶车都安装环视多枚摄像头激光雷达:用于障碍物位置识别、绘制地图、辅助定位等,准确率非常高,很多方案中将激光雷达作为主传感器使用毫米波雷达:阴雨天、雾霾天能够辅助感知获取物体的位置和速度,观测距离远但误检较多。
2022-10-29 14:38:49
1747
4
原创 Wide-Deep论文解析与代码实现
论文中还降讲到了联合(joint)和集成(ensemble)的区别,集成是每个模型单独训练,再将模型的结果融合,相比于联合训练,集成的每个独立的模型都得学的足够好才有利于随后的回合,因此模型的size也会更大。在集成学习中,每个部分的参数是互不影响的,而在联合学习中,它们的参数是一起训练的。以上的描述可能比较抽象,类比到我们的大脑认识新事物的过程,起初老师,父母教导我们这个世界的规则,形成对这个世界最初的启蒙,我们知道麻雀会飞,它有一对翅膀,喜鹊也可以飞,因为它也有一对翅膀。
2022-10-28 21:11:11
667
1
原创 DeepFM理论与实践
DeepFM模型大致由两部分组成,分别为FM和DNN,而FM部分又由一阶特征部分和二阶特征交叉部分组成,所以模型大概可以拆成三部分,分别为FM一阶特征Linear部分,二阶特征交叉部分和DNN的高阶特征交叉部分。
2022-10-28 21:01:41
957
原创 DeepCrossing理论与实践
DeepCrossing的结构比较简单清晰,没有引入特殊的模型结构,只是常规的Embedding+多层神经网络。但是在DeepCrossing中没有任何人工特征工程的参与,只需要简单的特征处理,原始特征经过Embedding层输入神经网络层,自主交叉和学习,通过调整神经网络的深度进行特征之间的深度交叉,也是DeepCrossing名称的由来(大悟)。最后附上论文链接。
2022-10-28 20:58:39
484
转载 【转载】豆瓣最受欢迎的书评——《透明的哀伤》
听说席慕容,是十余年前,中学语文课上时常出现她的名字,只知道她的作品文笔极其优美细腻,年少的我,看不出其中的奥妙,看不见她对人生的感悟。再次与她相逢,是在网上买到她的散文集《透明的哀伤》,我才知道原来她的诗作和文风曾影响过一代人;才知道她是在诗与画作中游走的精灵;还知道她的蒙古贵族的血统和那早年流离的人生历程。我查到这些的时候,看她的文字的时候,心头是时时划过一丝羡慕,是怎样幸运的女子,才能与艺术相
2015-07-17 20:34:37
1062
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人