一,泰勒级数定义:
- 若
在点
处有各阶导数
,
,则可求出
在点
处的泰勒级数:
- 这是个
的幂级数,收敛中心在
,收敛区间为
- 如果设
,则得到麦克劳林级数:
二,函数的泰勒展开式是唯一的:
- 若
,则
三,的充要条件:
- 泰勒公式的余项
,在x处的极限为0:
- 若
,则
- 泰勒公式如图:
四,将函数展开成麦克劳林级数
的步骤:
- 直接展开法
- 求出
在
处的各阶导数:
,,如果处某阶导数不存在,则不能展开
- 写出幂级数
,并求出收敛半径R
- 写出余项
- 考察当x在收敛区间内
时,余项
的极限是否为0:
,如果为0,则
五,例题1,将函数展开成x的幂级数
,
- 写出幂级数
,收敛域
- 写出余项
,
- 当x在收敛区间内
时:
- 因为
收敛,所以
,因此
- 结论
,收敛域
六,例题2,将函数展开成x的幂级数
,
,
,含n不能直接代
- 展开:
- 写出幂级数
,收敛域
- 写出余项
,
- 当x在收敛区间内
时:
- 因为
收敛,所以
,因此
- 结论
,收敛域