第八讲 函数直接展开成幂级数

本文深入探讨了泰勒级数和麦克劳林级数的基本概念,详细解释了函数展开成幂级数的方法,以及如何确定收敛域。通过两个具体例题,展示了如何将函数展开为x的幂级数,并分析了收敛性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一,泰勒级数定义:

  • f(x)在点x=x_{0}处有各阶导数f^{(n)}(x_{0})(n=0,1,2,...),则可求出f(x)在点x=x_{0}处的泰勒级数:
  • \sum_{n=0}^{\infty }\frac{f^{(n)}(x_{0})}{n!}(x-x_{0})^{n}
  • 这是个x-x_{0}的幂级数,收敛中心在x_{0},收敛区间为(x_{0}-R,x_{0}+R)
  • 如果设x_{0}=0,则得到麦克劳林级数:\sum_{n=0}^{\infty }\frac{f^{(n)}(0)}{n!}x^{n}

二,函数f(x)的泰勒展开式是唯一的:

  • f(x)=\sum_{n=0}^{\infty }a_{n}(x-x_{0})^{n},则a_{n}=\frac{f^{(n)}(x_{0})}{n!}

三,f(x)=\sum_{n=0}^{\infty }\frac{f^{(n)}(x_{0})}{n!}(x-x_{0})^{n}的充要条件:

  • 泰勒公式的余项R_{n}(x),在x处的极限为0:\lim_{n\rightarrow \infty }R_{n}(x)=0
  • \lim_{n\rightarrow \infty }R_{n}(x)\neq 0,则f(x)\neq \sum_{n=0}^{\infty }\frac{f^{(n)}(x_{0})}{n!}(x-x_{0})^{n}
  • 泰勒公式如图:

四,将函数f(x)展开成麦克劳林级数\sum_{n=0}^{\infty }\frac{f^{(n)}(0)}{n!}x^{n}的步骤:

  • 直接展开法
  1. 求出f(x)x=0处的各阶导数:f(0),{f}'(0),{f}''(0),...,,如果处某阶导数不存在,则不能展开
  2. 写出幂级数\sum_{n=0}^{\infty }\frac{f^{(n)}(0)}{n!}x^{n}=f(0)+{f}'(0)x+\frac{​{f}''(0)}{2!}x^{2}+...+\frac{f^{(n)}(0)}{n!}x^{n}+...,并求出收敛半径R
  3. 写出余项R_{n}(x)=\frac{f^{(n+1)}(\xi )}{(n+1)!}x^{n+1}
  4. 考察当x在收敛区间内(-R,R)时,余项R_{n}(x)的极限是否为0:\lim_{n\rightarrow \infty }R_{n}(x)=0,如果为0,则f(x)=\sum_{n=0}^{\infty }\frac{f^{(n)}(0)}{n!}x^{n}

五,例题1,将函数f(x)=e^{x}展开成x的幂级数

  • f^{(n)}(x)=(e^{x})^{(n)}=e^{x}f^{(n)}(0)=e^{0}=1
  • 写出幂级数\sum_{n=0}^{\infty }\frac{f^{(n)}(0)}{n!}x^{n}=\sum_{n=0}^{\infty }\frac{1}{n!}x^{n},收敛域(-\infty ,\infty )
  • 写出余项R_{n}(x)=\frac{f^{(n+1)}(\xi )}{(n+1)!}x^{n+1}=\frac{e^{\xi }}{(n+1)!}x^{n+1}\left |\xi \right |< \left |x \right |
  • 当x在收敛区间内(-\infty ,\infty )时:
  • \left |R_{n}(x) \right |=\frac{e^{\xi }}{(n+1)!}\left |x \right |^{n+1}\leq \frac{e^{\left |\xi \right |}}{(n+1)!}\left |x \right |^{n+1}< e^{\left |x \right |}\frac{\left |x \right |^{n+1}}{(n+1)!}
  • 因为\sum_{n=1}^{\infty }\frac{\left |x \right |^{n+1}}{(n+1)!}收敛,所以\lim_{n\rightarrow \infty }\frac{\left |x \right |^{n+1}}{(n+1)!}=0,因此\lim_{n\rightarrow \infty }R_{n}(x)=0
  • 结论e^{x}=\sum_{n=0}^{\infty }\frac{x^{n}}{n!},收敛域(-\infty ,\infty )

六,例题2,将函数f(x)=sin(x)展开成x的幂级数

  • f^{(n)}(x)=sin^{(n)}(x)=sin(x+\frac{n\pi }{2})f^{(n)}(0)=sin(\frac{n\pi }{2})(n=0,1,2,...),含n不能直接代
  • 展开:sin(x)\sim 0+x+0-\frac{x^{3}}{3!}+0+\frac{x^{5}}{5!}+...=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+...
  • 写出幂级数\sum_{n=0}^{\infty }\frac{f^{(n)}(0)}{n!}x^{n}=\sum_{n=0}^{\infty }(-1)^{n}\frac{x^{(2n+1)}}{(2n+1)!},收敛域(-\infty ,\infty )
  • 写出余项R_{n}(x)=\frac{f^{(n+1)}(\xi )}{(n+1)!}x^{n+1}=\frac{sin(\xi +\frac{(n+1)\pi }{2})}{(n+1)!}x^{n+1}\left |\xi \right |< \left |x \right |
  • 当x在收敛区间内(-\infty ,\infty )时:
  • \left |R_{n}(x) \right |=\frac{\left |sin(\xi +\frac{(n+1)\pi }{2}) \right |}{(n+1)!}\left |x \right |^{n+1}\leq \frac{1}{(n+1)!}\left |x \right |^{n+1}
  • 因为\sum_{n=1}^{\infty }\frac{\left |x \right |^{n+1}}{(n+1)!}收敛,所以\lim_{n\rightarrow \infty }\frac{\left |x \right |^{n+1}}{(n+1)!}=0,因此\lim_{n\rightarrow \infty }R_{n}(x)=0
  • 结论sin(x)=\sum_{n=0}^{\infty }(-1)^{n}\frac{x^{(2n+1)}}{(2n+1)!},收敛域(-\infty ,\infty )
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值