一,齐次方程组的通解:
通解形式:x⃗=c1x1⃗+c2x2⃗\vec{x}=c_{1}\vec{x_{1}}+c_{2}\vec{x_{2}}x=c1x1+c2x2
用基本矩阵简化为:x⃗=[x1⃗x2⃗][c1c2]=Xc⃗\vec{x}=\begin{bmatrix}\vec{x_{1}} & \vec{x_{2}}\end{bmatrix}\begin{bmatrix}c_{1}\\ c_{2}\end{bmatrix}=X\vec{c}x=[x1x2][c1c2]=Xc
因为线性无关的特征向量有无穷多种,所以基本矩阵也有无穷多种。
通解中全部的基本矩阵表示为:[Xc1⃗Xc2⃗]\begin{bmatrix}X\vec{c_{1}} & X\vec{c_{2}}\end{bmatrix}[Xc1Xc2]
[Xc1⃗Xc2⃗]=X[c1⃗c2⃗]=XC\begin{bmatrix}X\vec{c_{1}} & X\vec{c_{2}}\end{bmatrix}=X\begin{bmatrix}\vec{c_{1}} & \vec{c_{2}}\end{bmatrix}=XC[Xc1Xc2]=X[c1c2]=XC,C为2阶方阵,并且|C|≠0(线性无关)
二,解齐次方程组的公式:
一般方程组:x⃗′=Ax⃗{\vec{x}}'=A\vec{x}x′=A