Python正态检验
https://blog.csdn.net/cyan_soul/article/details/81236124
https://blog.csdn.net/QimaoRyan/article/details/72861387
官方文档:https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.kstest.html
scipy.stats.kstest
from scipy import stats
kstest(rvs, cdf, args=(), N=20, alternative=’two_sided’, mode=’approx’, **kwds)
from scipy import stats
stats.kstest(df['value'], 'norm', (u, std))
# 结果返回两个值:statistic → D值,pvalue → P值
# p值大于0.05,很可能为正态分布
rvs:待检验的数据
cdf:检验方法,这里我们设置为‘norm’,即正态性检验
alternative:默认为双尾检验,可以设置为‘less’或‘greater’作单尾检验
scipy.stats.normaltest
scipy.stats.normaltest(a, axis=0, nan_policy=’propagate’)
a:待检验的数据,至少8个
axis:默认为0,表示在0轴上检验,即对数据的每一行做正态性检验,我们可以设置为 axis=None 来对整个数据做检验
nan_policy:当输入的数据中有空值时的处理办法。默认为 ‘propagate’,返回空值;设置为 ‘