python并行multiprocessing

本文介绍了一种使用Python的multiprocessing模块进行并行处理的方法。通过调整进程池大小为CPU核心数的三分之二,实现任务的高效并行执行。文中详细展示了如何利用map函数将任务分配给进程池,并在完成后正确回收资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import multiprocessing as mp

nProcess = 2*mp.cpu_count()/3

if nProcess > 1:
        pool = mp.Pool(nProcess)
        res = pool.map(get_prx, gdic.keys())
    else:
        res = map(get_prx, gdic.keys())
最后一定要记得回收:

pool.close()

pool.join()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值