数据分析 -- pandas

1. Pandas简介

  1. Pandas基于Numpy实现,扩展数据类型,更关注数据与索引之间的关系;
  2. Pandas可以处理各种文件格式,CSV文件、JSON文件、XML文件、Parquet文件、SQL文件
  3. Pandas提供两个数据类型:Series,DataFrame
  4. 官方文档:https://pandas.pydata.org/pandas-docs/stable/index.html
  5. 中文文档:https://www.pypandas.cn/docs/

2. Pandas类型

2.1 Series类型

  1. 一组(列)数据和其相关的数据索引组成,索引在左边值在右边,可以通过索引访问;
  2. 可以保存任何类型数据(int/str/float/obj…)的一维数组;
  3. 如果没指定索引,会自动创建一个0到n-1的整数型索引,也可以使用index指定索引
  • 数据构造
# 默认索引
ser = pd.Series([9,8,7,6,5])
print(ser)
>0    9
 1    8
 2    7
 3    6
 4    5
 dtype: int64

# 指定索引
ser = pd.Series(range(5), index= ['a','b','c','d','e'])
print(ser)
>a    0
 b    1
 c    2
 d    3
 e    4
 dtype: int64

# numpy数组创建
ser = pd.Series(np.array([1,2,3]))
print(ser)
>0    1
 1    2
 2    3
 dtype: int64

# 字典创建
ser = pd.Series({
   
   'name': '张三', 'age': 18, 'sex': 'F','hobby': '足球'})
print(ser)
>name     张三
 age      18
 sex       F
 hobby    足球
 dtype: object
0
name 张三
age 18
sex F
hobby 足球
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值