研究打板策略

该文通过Python编程使用AkShare库获取股票市场数据,首先找出当前最大涨幅的板块,然后筛选出该板块中的涨停股票。接着,结合个股热度排名,对选定股票进行历史交易数据的获取和处理,绘制烛形图进行技术分析,特别是关注20日和5日均量以及高点突破情况,以判断股票的潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

思路:

根据当前最强势板块以及前一天的涨停股票池,以及股票个股热度名单小于50

导入包:

import akshare as ak
import numpy as np
import pandas as pd
from datetime import datetime
import matplotlib.pyplot as plt
import mplfinance as mpf
from pylab import mpl
mpl.rcParams['font.sans-serif'] = ['SimHei']  # 设置中文字体为微软雅
plt.rcParams['font.sans-serif'] = ['SimHei']        # 字体设置
import matplotlib
matplotlib.rcParams['axes.unicode_minus']=False    # 负号显示问题

获取最热板块:

#获取最大涨幅板块
ind = ak.stock_board_industry_name_em()
bk = ind.sort_values('涨跌幅',ascending=False)['板块名称'][0]
bk

获取板块中涨停个股:

end =datetime.now().strftime('%Y%m%d')
stock_zt_pool_em_df = ak.stock_zt_pool_em(date=end)
stock_pool= stock_zt_pool_em_df[(stock_zt_pool_em_df['所属行业']==bk)]

数据修改: 

stock_hot_rank_wc_df = ak.stock_hot_rank_wc(date=end)
stock_hot_rank_wc_df.rename(columns= {'股票代码':'代码'},inplace=True)
stock_hot_rank_wc_df = stock_hot_rank_wc_df[(stock_hot_rank_wc_df['代码']==stock_pool.iloc[0,1])]
stock_pool = pd.merge(stock_pool,stock_hot_rank_wc_df,on='代码')

 绘图:

for i in range(len(stock_pool['代码'])):
    end =datetime.now().strftime('%Y%m%d')
    code= str(stock_pool['代码'].values[i])
    data =  ak.stock_zh_a_hist(symbol=code, period="daily", start_date="19900301", end_date=end, adjust="")
    data['日期'] = pd.to_datetime(data['日期'], format='%Y-%m-%d')
    data.rename(columns= {'日期':'date','开盘':'open','最高':'high','最低':'low','收盘':'close','成交量':'volume'},inplace=True)
    data['code'] = code
    data = data[['date','open','close','high','low','volume','code']]
    data['max'] = data['high'].rolling(20).max()
    data['volume_20m'] = data['volume'].rolling(20).mean()
    data['volume_5m'] = data['volume'].rolling(5).mean()
    data = data[(data['high']>=data['max'])&(data['volume']>data['volume_20m'])&(int((str(stock_pool['个股热度排名'].values).split('/'))[0][2:])<50)]
    data = data.set_index(data.date)
    data = data[['open','close','high','low','volume','code']]
    print(code)
    mpf.plot(data[-10:],type='candle',volume=True)

效果图:

 

03-15
### 关于 Ptrade IT 平台或 Ptrade 交易系统的详细介绍 PTrade 是一款专为高净值客户和机构投资者设计的专业投资软件,旨在通过一系列功能模块满足用户的多样化交易需求。以下是关于 Ptrade 的核心特性及其相关内容: #### 功能特点 Ptrade 提供了一系列强大的交易工具,涵盖了多种交易场景下的需求[^1]。这些工具包括但不限于 ETF 趋势交易、网格交易、拐点交易以及可转债套利等。这种多功能的设计使得 Ptrade 可以适应不同背景客户的个性化需求。 此外,PTrade 还提供了普通交易、篮子交易、日内回转交易、算法交易等多种功能模块[^2]。这些功能不仅能够提升用户在复杂市场环境中的操作灵活性,还支持程序化策略交易和量化投研/回测/实盘等功能场景。 #### 技术架构与集成能力 为了进一步增强其自动化交易的能力,Ptrade 支持与其他金融技术框架的对接。例如,CTP(China Trading Platform)是国内期货市场的主流行情和交易平台接口之一。许多券商已经部署了 CTP 接入服务,这使得引入策略算法后即可构建基础的自动交易系统[^3]。对于希望开发更高级别的自动化交易解决方案的用户来说,这一特性尤为重要。 #### 数据订阅服务 除了丰富的交易工具外,Ptrade 还集成了全推数据订阅服务。这项服务允许用户获取全市场股票的实时更新信息,包括最新的交易价格和成交量等重要指标[^4]。借助该功能,用户可以根据自身的具体需求定制化的选择关注的目标股票或者行业板块,从而实现精准的数据监控和服务优化。 ```python # 示例代码展示如何利用API进行简单的数据请求模拟 import requests def fetch_stock_data(stock_code, api_key): url = f"https://api.example.com/v1/stocks/{stock_code}?key={api_key}" response = requests.get(url) if response.status_code == 200: data = response.json() return { 'price': data['last_price'], 'volume': data['total_volume'] } else: raise Exception(f"Failed to retrieve stock data: {response.text}") example_api_key = "your_api_key_here" result = fetch_stock_data('AAPL', example_api_key) print(result) ``` 上述 Python 代码片段展示了如何通过 API 请求获取某只个股的基本财务数据。虽然这是简化版本,但它体现了现代金融科技应用中常见的实践方式——即通过编程手段高效处理海量金融市场动态变化的信息流。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

神出鬼没,指的就是我!

必须花钱,数据超好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值