TensorFlow上手(三)

本文是TensorFlow上手系列的第三篇,主要探讨如何自定义损失函数和评估指标,实现多个输入输出的模型,并介绍Keras的回调函数,如EarlyStopping、ModelCheckpoint和ReduceLROnPlateau,展示了它们在训练过程中的应用和参数设置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在前两篇文章中,我们介绍tf的一些基础概念以及模型运算的基本流程,现在我们进一步学习tf.今天主要有以下学习目标:

  • 自定义(损失函数+评估指标)

  • 多个输入输出模型

  • 回调函数

传送门:TensorFlow上手(一)TensorFlow上手(二)

自定义损失和指标

  • 自定义损失函数

keras允许我们在complie方法里面传入自定义的损失函数:

def get_uncompiled_model():
    inputs = keras.Input(shape=(784,), name="digits")
    x = layers.Dense(64, activation="relu", name="dense_1")(inputs)
    x = layers.Dense(64, activation="relu", name="dense_2")(x)
    outputs = layers.Dense(10, activation="softmax", name="predictions")(x)
    model = keras.Model(inputs=inputs, outputs=outputs)
    return model


def custom_mean_squared_error(y_true, y_pred):
    return tf.math.reduce_mean(tf.square(y_true - y_pred))


model = get_uncompiled_model()
model.compile(optimizer=keras.optimizers.Adam(), loss=custom_mean_squared_error)
  • 自定义评估指标

同样,也允许传入自定义的评估指标,它要继承keras.metrics.Metric。下面的例子实现了计算多少个正样本的评估指标:

class CategoricalTruePositives(keras.metrics.Metric):
    def __init__(self, name="categorical_true_positives", **kwargs):
        super(CategoricalTruePositives, self).__init__(name=name, **kwargs)
        self.true_positives = self.add_weight(name="ctp", initializer="zeros")

    def update_state(self, y_true, y_pred, sample_weight=None):
        y_pred = tf.reshape(tf.argmax(y_pred, axis=1), shape=(-1, 1))
        values = tf.cast(y_true, "int32") == tf.cast(y_pred, "int32")
        values = tf.cast(values, "float32")
        if sample_weight is not None:
            sample_weight = tf.cast(sample_weight, "float32")
            values = tf.multiply(values, sample_weight)
        self.true_positives.assign_add(tf.reduce_sum(values))

    def result(self):
        return self.true_positives

    def reset_states(self):
        # The state of the metric will be reset at the start of each epoch.
        self.true_positives.assign(0.0)


model = get_uncompiled_model()
model.compile(
    optimizer=keras.optimizers.RMSprop(learning_rate=1e-3),
    loss=keras.losses.SparseCategoricalCrossentropy(),
    metrics=[CategoricalTruePositives()],
)

自定义指标实现过程依赖四个方法:

  1. __init__(self),为指标创建状态变量

  2. update_state(self),使用目标 y_true 和模型预测 y_pred 更新状态变量

  3. result(self),使用状态变量来计算最终结果

  4. reset_states(self),在下一次迭代中,重新初始化指标的状态

上面代码中,self.add_weight表示增加一个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

整得咔咔响

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值