torch.cat 函数介绍

torch.cat 是 PyTorch 中用于将多个张量沿着指定维度拼接(concatenate)的函数。它广泛应用于深度学习中,例如在神经网络中合并特征、拼接不同维度的数据等场景。

功能与用途

torch.cat 的主要功能是将多个张量沿着指定的维度拼接成一个新的张量。拼接的张量在其他维度上必须具有相同的形状,否则会报错。

函数签名

torch.cat(tensors, dim=0, *, out=None) → Tensor
参数说明
  1. tensors (sequence of Tensors):需要拼接的张量序列,可以是列表(list)或元组(tuple)。这些张量必须具有相同的形状,除了拼接维度外。

  2. dim (int, optional):指定拼接的维度,默认值为 0。例如:

    • dim=0 表示沿着第一个维度(行)拼接。

    • dim=1 表示沿着第二个维度(列)拼接。

  3. out (Tensor, optional):可选参数,用于指定输出张量。如果提供,结果将存储在该张量中。

返回值

返回一个新的张量,它是输入张量沿着指定维度拼接的结果。

使用示例

沿着第一个维度拼接(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值