- 博客(15)
- 收藏
- 关注
原创 autogen AssistantAgent 类详解
摘要 AssistantAgent是一个智能助手代理类,继承自BaseChatAgent和Component[AssistantAgentConfig],具备模型推理、工具调用和任务处理能力。主要功能包括:流式输出、工具反射、上下文管理、记忆联动和任务交接。它支持结构化输出,可通过构造函数配置模型客户端、工具列表、工作台、交接配置等参数。使用时需注意工具名唯一性、线程安全限制以及不同模型的特异行为。典型应用场景包括:基础问答、工具调用、结构化数据输出和有记忆的对话系统。开发时需遵循工具/交接命名规范,并注意
2025-06-29 19:14:37
915
原创 AutoGen工作流失控?GraphFlow让你重新掌控多智能体协作!
摘要:用GraphFlow解决AutoGen多智能体协作失控问题 AutoGen多智能体系统常因本地模型能力不足导致工作流失控,表现为无限循环、偏离主题等问题。传统解决方案如RoundRobinGroupChat、SelectorGroupChat和Swarm都存在局限性,单纯优化提示词也难以根治这些问题。GraphFlow通过图结构流程编排,提供明确的执行路径、条件分支控制和并行处理能力,从根本上解决了工作流失控问题。相比传统方案,GraphFlow具有流程清晰、行为可控、调试简单等优势,尤其适用于客户支
2025-06-29 19:11:45
894
原创 AutoGen(七) Swarm实战:多智能体自主交接机制深度解析(附完整代码)
AutoGen Swarm多智能体自主交接机制解析 本文深入解析AutoGen Swarm机制的核心原理和实现方式,通过对比传统中央协调系统,突出Swarm的智能体自主交接优势。重点剖析了智能体选择机制的四步决策流程(任务分析、能力评估、专业匹配、交接决策)和四大交接触发条件。文章还提供了一个完整的客户支持系统实战案例,包含旅行代理和航班退款专员两个专业智能体的协作实现,演示了从任务接收到专业处理再到用户交互的全流程。通过代码示例详细展示了Swarm如何实现智能体间的无缝协作和上下文连续性,为构建高效灵活的
2025-06-29 19:10:12
675
原创 AutoGe(六)一文读懂 AutoGen SelectorGroupChat:多智能体协作的“最强大脑“!
摘要:微软AutoGen框架中的SelectorGroupChat是一种多智能体协作群聊模式,通过动态选择器机制实现复杂任务分工。它允许通过自定义选择器函数,根据上下文实时决定参与响应的智能体,支持规划、检索、分析等不同角色的协作。文章详细解析了其核心工作流程、选择器机制、终止条件等特性,并提供了代码示例演示如何构建多智能体协作系统。典型应用场景包括专家系统、流程决策、AI博弈等,同时给出了实用技巧和进阶玩法建议。
2025-06-29 19:08:31
805
原创 解决Ollama工具调用问题:使用LM Studio完美替代本地模型调用
本文介绍了使用LM Studio替代Ollama解决AutoGen项目中本地模型工具调用问题的方案。针对Ollama常见的工具调用失败、格式不一致等问题,LM Studio提供了更稳定的API接口和更好的兼容性。文章详细讲解了LM Studio的安装配置、本地端口暴露方法,并给出了AutoGen集成的代码示例。通过对比表展示了LM Studio在工具调用、资源占用等方面的优势,为开发者提供了一个更可靠的本地模型调用替代方案。
2025-06-29 19:05:56
325
原创 AutoGen(五) Human-in-the-Loop(人类在环)实战与进阶:多智能体协作与Web交互全流程(附代码)
《AutoGen Human-in-the-Loop 实战指南:多智能体协作与Web交互》 摘要:本文深入探讨AutoGen框架中Human-in-the-Loop(HITL)机制的应用。HITL允许人类在多智能体协作过程中实时介入,解决需要人工审核、决策的复杂场景(如代码评审、企业审批等)。文章详细介绍了两种核心交互模式:运行时同步反馈(通过UserProxyAgent实现)和运行后异步反馈(通过max_turns控制),并提供了控制台和WebSocket集成的代码示例。特别强调HITL可以灵活对接Web
2025-06-27 22:36:23
449
原创 AutoGen(四) team多智能体团队实战:团队创建、运行、终止与高级用法全解析(附代码)
本文全面解析AutoGen多智能体团队(Team)的核心机制与应用。通过对比单Agent模式,重点介绍了团队协作在代码评审、智能问答等复杂场景的优势。详细讲解了团队创建流程(包括主Agent和评论Agent设置)、基于RoundRobinGroupChat的轮询机制、反思模式提升输出质量的原理。提供多个实战代码示例,涵盖基础团队运作、流式消息观察、内外终止控制等高级用法。特别建议使用GPT-4o模型以获得最佳工具调用体验,并针对不同模型优化提示词设计。
2025-06-27 22:34:17
1193
原创 AutoGen(三)智能体开发实战:让AI不仅会聊天,还能用工具和结构化输出!
AutoGen智能体开发实战摘要AutoGen框架将大语言模型封装为"智能体"(Agent),赋予AI使用工具和结构化输出的能力。核心功能包括:工具调用:通过tools参数传入Python函数,AI能自动调用外部API、数据库等结构化输出:使用output_content_type指定Pydantic模型,使AI输出JSON等格式开发只需定义函数和输出模型,Agent就能实现复杂功能,显著提升AI的实用性。框架适用于智能助手、业务流程自动化等场景。
2025-06-26 11:15:57
738
原创 AutoGen(二) 一文搞懂AutoGen消息机制:多智能体协作通信全流程实战
本文深入解析了AutoGen框架的消息机制在多智能体协作中的应用。文章首先概述了AutoGen消息系统的核心优势,包括支持多模态消息和高扩展性。随后详细介绍了文本消息和多模态消息的创建方法,并提供了实战代码示例展示如何利用MultiModalMessage驱动智能体任务。文章还探讨了非OpenAI模型的对接方法,重点解析了model_info参数的配置要点,为开发者提供了清晰的参数说明和使用建议。通过本文,读者可以快速掌握AutoGen消息机制的使用技巧,构建高效的多智能体协作系统。文末提供了常见问题解答和
2025-06-26 11:09:01
1273
原创 AutoGen(一) 框架概述与快速上手指南:从安装到实战
AutoGen是由微软开源的多智能体协作框架,旨在突破大型语言模型(LLM)的单点问答局限,使其成为复杂任务的"自动化大脑"。其核心优势包括:多代理自然语言协作系统、无缝工具集成与人工审核、灵活工作流编排。通过定义代理角色和初始任务,代理间可自动对话分工,完成从需求分析到代码优化的全流程。本文提供了基于Ollama本地模型的实战指南,涵盖环境配置、代码示例和运行解析,展示了如何实现本地化部署和模型切换。AutoGen将LLM升级为自动化系统核心,为开发智能应用提供了高效解决方案。
2025-06-25 17:06:58
657
原创 Ollama连接不上Docker中的应用
摘要:Windows Docker容器无法连接宿主机Ollama服务的常见解决方案:1)改用host.docker.internal替代localhost地址;2)检查宿主机Ollama运行状态及容器网络连通性;3)配置Windows防火墙开放11434端口;4)清理异常容器或创建自定义Docker网络。关键注意点包括:必须使用特定位址访问宿主机服务,确保防火墙放行端口,通过curl命令验证连接。若使用Docker Desktop,无需WSL额外配置。文末提供日志检查方法和互动讨论建议。(149字)
2025-06-25 10:02:38
471
原创 Ollama启动失败,端口冲突终极解决方案:一劳永逸解决WinNAT占用11434端口问题
本方案通过系统级端口排除机制,实现无需关闭虚拟化功能即可稳定运行Ollama。相比暴力停止WinNAT服务,既保证了WSL网络功能,又避免了每次重启后重新配置的麻烦。欢迎在评论区分享你的优化方案!
2025-06-24 11:49:12
449
原创 Ollama 启动失败问题全解析:Hyper-V 冲突是罪魁祸首!
通过本文的分析,你应该能够:✅快速识别Ollama 启动失败类型✅理解根本原因Hyper-V 冲突是主要问题✅选择最佳方案卸载 Hyper-V 是最直接有效的方法✅彻底解决问题避免反复出现端口冲突重要提醒卸载 Hyper-V 是解决 Ollama 启动失败最直接有效的方法,90% 的用户问题都能通过这种方式彻底解决!🎉📝有任何问题欢迎在评论区讨论,我会及时回复!
2025-06-22 14:00:06
1302
原创 MCP Server技术拆解:揭秘AI大模型的万能接口架构
MCP服务器为AI能力的统一管理和调用提供了标准化的解决方案。通过本文的学习,相信你已经掌握了MCP服务器的基本概念、创建方法和使用技巧。在实际应用中,记得根据具体需求进行适当的调整和优化。作者简介:本文作者专注于AI服务架构设计和开发,有丰富的实战经验。
2025-02-23 19:37:34
3904
原创 Genesis 安装指南与环境配置(Python 3.9+)
随着人工智能和机器学习的蓬勃发展,各式各样的框架和工具如雨后春笋般涌现,为科研人员和开发者的创新之路提供强大支持。需要特别说明的是,目前 Genesis 项目中备受期待的对话式生成 AI 接口,当前仍处于概念展示阶段,仅存在于 PPT 之中,尚未对外开放 ,大家在关注其发展时需留意这一情况。本文将着重介绍如何使用 Python 3.9 或更高版本,完成 Genesis 的安装与配置,并为大家提供一套完整、详尽的步骤,助力各位顺利搭建工作环境。现在,我们已经万事俱备,只欠东风,准备编译 Genesis。
2025-01-17 10:24:21
1961
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人