异或XOR
在数字电路中异或作为一种基础运算,一般以上面的方式出现,那异或是怎么来的,或者说能不能用更基础的运算(如与、或、非)去构造它?
假设我们不知道有异或这种东西,现在我们只有它的真值表。
可以观察到两个输入相同时输出为0,输入不相同时输出为1.
首先处理输入相同的情况,怎么让1_1变成0,方法有很多,与非门或者把一个输入反转再通过与门.总之有个重点就是得把其中一个输入反转.这个门同时也得让0_0输出0,显然与非门不行,把一个输入反转再通过与门可行.
那么把一个输入反转再通过与门是否适应于输入不相同的情况呢?
来穷举一下
A | B | OUT |
---|---|---|
0 | 1 | 1 |
1 | 0 | 0 |
第2种情况输出0了,发现输出与输入的位置有关,那么怎么解决这种问题?
一个不够就用两个,这样就有两个输出,总有一个是对的,再针对这两个输出用一个或门就解决了.

写这篇文章之前我的想法是用或门的,写的时候发现与门也行.
把它转成逻辑表达式
用德摩根律化简一下得到结果正确
当然还有其他实现方法
