- 博客(10)
- 资源 (5)
- 收藏
- 关注

原创 零基础学习神经网络第七课零代码Excel表手搓分类任务识别数字0到9神经网络模型搭建
《零代码Excel搭建神经网络实现数字识别》摘要:课程通过Excel表格模拟神经网络,实现7段数码管数字0-9的分类识别。核心原理包含三部分:输入层7个节点表示数码管亮灭状态,隐藏层通过加权计算和激活函数处理特征,输出层用Softmax函数输出10个数字的概率分布。训练过程采用反向传播算法,在Excel中用SUMPRODUCT等公式模拟神经元计算和参数调整。相比上节回归任务,本课分类任务需处理离散输出。该方法无需编程,用表格单元格代表神经元,公式替代代码,让零基础者直观理解神经网络的工作机制,包括前向传播和
2025-06-11 11:14:09
1738
3
原创 零基础学习神经网络第十课手写数字识别系统技术文档-网页版本手写数字识别系统展示了在浏览器端实现完整机器学习工作流的能力。系统采用模块化设计,包含绘图、模型训练和预测三大核心模块
摘要:本文介绍了一个基于TensorFlow.js的浏览器端手写数字识别系统。该系统采用多层感知机神经网络架构,包含绘图模块、模型训练和预测三大核心功能,完全在客户端完成数据处理、模型训练和数字识别。系统使用TensorFlow.js 4.13.0框架,搭配TailwindCSS UI和Chart.js可视化工具,实现了包含128和64个神经元的双层隐藏层网络结构。关键技术包括图像预处理、实时训练监控、内存优化及跨平台支持,具有完全客户端执行、隐私保护、直观交互等特点,并提出了支持MNIST数据集和CNN架
2025-06-26 15:28:22
887
原创 人工智能神经网络基础课程-零基础神经网络模型搭建基础原理及 Excel 手搓搭建课程
定义:模拟生物神经网络的信息处理系统,由大量神经元(节点)连接组成,通过学习调整权重,构建适应特定任务的模型。目标:实现类似人工智能的机器学习技术,如模式识别、数据分类、预测等。不用代码也能玩 AI:用 Excel 表格的公式功能,就能实现神经网络的 “前向传播算预测→反向传播调参数” 全过程。关键技巧:数据归一化(让函数好用)、迭代调参(像拧螺丝一样慢慢调准)、均方误差(衡量好坏的标准)。应用场景:适合商业价格预测,帮商家分析批量折扣策略,或者其他需要找 “数量 - 价格” 关系的场景。
2025-06-17 22:05:08
739
2
原创 零基础学习神经网络第一课 - 全面入门指南视频主题:从数学原理到实战逻辑的神经网络极简入门,受众定位:无AI/编程基础的学习者
摘要:本文介绍了人工神经网络的基础知识,从生物神经网络的工作原理出发,详细解析了人工神经元的计算模型、网络架构与训练流程。通过类比计算器和信息加工流水线等通俗案例,解释了神经网络如何模仿人脑进行学习和判断,并探讨了其在图像识别、语音处理等领域的应用。文章还对比了生物与人工神经网络的异同,指出人工神经网络虽然具有自动提取特征等优势,但仍存在黑盒问题和数据依赖性等局限。总体而言,人工神经网络通过数学建模实现了生物神经系统的计算范式,成为推动AI多领域发展的核心技术。
2025-06-16 10:50:50
583
原创 零基础学习神经网络第二课人工神经网络基础搭建原理-人工神经网络与生物神经网络的模拟机制
:人工神经网络通过模拟生物神经元的结构、信号处理机制和学习逻辑,实现了从数据输入到任务输出的端到端学习。其核心在于通过权重调整动态优化连接模式,最终达成对复杂模式的泛化能力。若你对某部分公式推导、Excel 操作细 节还有疑问,或者想尝试不同设定,随时告诉我。联系抖音号码938129762,索要资料、课件、沟通讨论等。
2025-06-15 07:00:00
811
原创 零基础学习神经网络第三课神经网络向前与反向传播及权重调整
《神经网络基础:前向与反向传播机制》本文系统讲解了神经网络的核心学习机制。前向传播通过权重计算(y=wx)产生预测值;反向传播根据误差(如实际值3与预测值4的差值)调整权重(Δw=-0.4)。学习率(η=0.2)控制调整幅度,多轮迭代使权重趋近理论值(如最终2.5)。文中以x=2、x=3两组数据为例,演示了权重从初始值2逐步优化至1.8、2.04的过程。该机制是CNN/RNN等复杂模型的基础,后续需掌握链式法则等关键技术。全文通过线性模型直观呈现了神经网络的学习本质。
2025-06-14 07:00:00
407
原创 零基础学习神经网络第六课-车厘子神经网络价格预测
《神经网络可视化工具——回归任务使用指南》摘要 本工具是零基础学习神经网络的第六课实践项目,通过HTML网页实现车厘子价格预测的回归任务。用户需下载HTML文件和配套的Excel训练数据,用浏览器打开即可使用。工具提供可视化界面,可自定义权重、偏置和学习率参数,支持Excel数据导入,实时显示训练过程中的数据预测曲线和损失函数变化。通过调整参数观察不同初始值对训练效果的影响,帮助理解神经网络基本原理。操作步骤包括:加载训练数据、设置参数、开始训练、观察预测结果和损失曲线。技术课程相关信息可通过抖音号9381
2025-06-13 18:09:20
230
原创 零基础学习神经网络第四课神经网络向前与反向传播及权重调损失函数(误差函数)的选择
《神经网络误差函数的选择与优化分析》摘要: 本文系统分析了神经网络回归任务中三种误差函数的核心特性。重点对比了差值误差(存在正负抵消缺陷)、绝对值误差(鲁棒但收敛慢)和均方误差(MSE)的数学原理。MSE因其梯度与误差线性相关、统计最优性和计算高效性成为标准选择,特别展示了其权重更新公式W=Yt/x的收敛优势。文章进一步探讨了分类任务中交叉熵的必然性,以及Huber损失等鲁棒函数处理异常值的方法。通过损失曲面可视化建议和实际应用指导,强调应根据数据分布和业务需求灵活选择损失函数。最后提供了完整的梯度推导示例
2025-06-13 12:34:54
565
原创 零基础学习神经网络第五课--Excel表中手搓回归任务神经网络预测 神经网络任务类型详解 回归任务 分类任务
《Excel手搓神经网络:回归与分类任务详解》摘要 本文系统介绍了神经网络在回归和分类任务中的应用。回归任务通过建立特征与连续值的映射关系,采用线性/ReLU激活函数和MSE损失函数,以房屋价格预测为例演示了梯度下降参数更新过程。分类任务则通过Sigmoid/Softmax激活函数和交叉熵损失函数处理离散类别划分,并用手写数字识别案例说明多分类实现方法。文章对比了不同激活函数与损失函数的特性,详细推导了参数更新公式,为Excel实现神经网络提供了完整理论基础。
2025-06-12 13:11:35
869
原创 零基础神经网络第六课零代码Excel表手搓回归任务价格预测神经网络AI模型
神经网络是一种模拟人类学习过程的智能计算模型,通过数学公式和误差反馈不断调整参数,最终实现从输入数据中找出规律并做出预测。其核心结构分为输入层、隐藏层和输出层,通过权重和偏置调整信息处理。学习过程包含前向预测和反向调参两个阶段:前者计算预测值,后者根据误差调整参数。Excel可实现简单神经网络的搭建与训练,通过表格公式模拟数学计算,直观展示参数调整和误差下降过程。神经网络可应用于回归任务(如价格预测)和分类任务(如数字识别),本质是通过数学模拟"学习"的智能计算器。
2025-06-11 13:45:17
989
基于浏览器端手写数字识别应用,实现了从数据加载、模型训练到数字识别的完整流程
2025-06-26
神经网络入门教程:生物与人工神经网络原理及应用实例解析
2025-06-13
零基础学习神经网络第六课-车厘子神经网络价格预测
2025-06-13
零基础学习神经网络第七课零代码Excel表手搓分类任务识别数字0到9神经网络模型搭建
2025-06-11
零基础学习神经网络第七课零代码Excel表手搓分类任务识别数字0到9神经网络模型搭建
2025-06-11
《PBOC3.0标准详细内容》.pdf
2021-06-28
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人