# 使用Google Gemini API创建智能决策代理
在现代AI应用中,自动化和智能决策是关键的组成部分。本文将介绍如何使用Google Gemini函数调用来创建一个智能代理,该代理可以根据需要通过Tavily搜索引擎查找信息。这是一项强大的功能,可以显著提升应用的智能化水平。
## 环境配置
首先,我们需要设置一些环境变量以访问相关API服务:
- `TAVILY_API_KEY`: 用于访问Tavily搜索引擎。
- `GOOGLE_API_KEY`: 用于访问Google Gemini API。
## 安装与使用
### 安装LangChain CLI
开始之前确保已经安装LangChain CLI:
```bash
pip install -U langchain-cli
创建LangChain项目
要创建一个新的LangChain项目并安装Gemini Functions Agent作为唯一包,可以使用以下命令:
langchain app new my-app --package gemini-functions-agent
如果您希望在已有项目中添加此包,可以运行:
langchain app add gemini-functions-agent
配置服务器
接下来,您需要在服务器代码中添加如下内容到server.py
文件中:
from gemini_functions_agent import agent_executor as gemini_functions_agent_chain
add_routes(app, gemini_functions_agent_chain, path="/openai-functions-agent")
可选:配置LangSmith
LangSmith用于追踪、监控和调试LangChain应用。您可以在这里注册。如果无法访问,可以跳过这部分。
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project> # if not specified, defaults to "default"
运行LangServe实例
如果您在项目目录内,可以通过以下命令启动LangServe实例:
langchain serve
这将启动一个在本地运行的FastAPI应用,访问地址为 http://localhost:8000
。
查看模板和访问功能
- 所有模板都可在
http://127.0.0.1:8000/docs
查看。 - 可以在
http://127.0.0.1:8000/gemini-functions-agent/playground
访问交互式功能。 - 可以通过代码访问模板:
from langserve.client import RemoteRunnable
# 连接远程实例以使用智能代理功能
runnable = RemoteRunnable("http://localhost:8000/gemini-functions-agent")
应用场景分析
这种智能代理可以用于多个场景,例如信息检索、自动化决策和实时建议。通过Google Gemini API和Tavily搜索引擎的结合,代理能够提供高效、准确的解决方案。
实践建议
- 集成监控服务:使用LangSmith来监控应用的性能和稳定性。
- 动态调整:根据实际使用情况调整代理的行为和决策逻辑。
- 关注安全:确保API密钥安全,避免泄露或滥用。
如果遇到问题欢迎在评论区交流。
---END---