使用MLflow跟踪LangChain实验

MLflow是一个功能强大的开源平台,用于管理机器学习生命周期中的工作流和工件。它提供了与许多流行的机器学习库的内置集成,也可以与任何库、算法或部署工具配合使用。在LangChain集成的背景下,MLflow提供以下功能:

  • 实验跟踪:MLflow跟踪并存储LangChain实验的工件,包括模型、代码、提示、指标等。
  • 依赖管理:MLflow自动记录模型依赖,确保开发和生产环境的一致性。
  • 模型评估:MLflow提供原生功能来评估LangChain应用程序。
  • 跟踪:MLflow允许您通过LangChain链、代理、检索器或其他组件可视化数据流。

注意:跟踪功能仅在MLflow版本2.14.0及以上可用。

本文将演示如何使用MLflow跟踪LangChain实验。

设置

安装MLflow Python包:

%pip install google-search-results num
%pip install mlflow -qU
%pip install langchain-openai -qU  # 可选:使用OpenAI LLM

环境设置

import os

# 如果运行MLflow Tracking Server,请设置MLflow跟踪URI
os.environ["MLFLOW_TRACKING_URI"] = "http://localhost:5000"
os.environ["OPENAI_API_KEY"] = "your-api-key"

创建MLflow实验

为了组织我们的运行和工件,我们建议创建一个专属的MLflow实验,而不是使用默认实验。

import mlflow

mlflow.set_experiment("LangChain MLflow Integration")

集成方法

方法1: 自动记录 (Autologging)

自动记录是利用MLflow提供的无缝追踪功能,推荐作为使用LangChain MLflow集成的首选。只需调用mlflow.langchain.autolog()即可开始使用。

import mlflow

mlflow.langchain.autolog(
    log_models=True,
    log_input_examples=True,
    log_model_signatures=True,
)

定义链 (Define a Chain)

from langchain.schema.output_parser import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model_name="gpt-4o", temperature=0)
prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "You are a helpful assistant that translates {input_language} to {output_language}."),
        ("human", "{input}"),
    ]
)
parser = StrOutputParser()

chain = prompt | llm | parser

调用链 (Invoke the Chain)

test_input = {
    "input_language": "English",
    "output_language": "German",
    "input": "I love programming.",
}

result = chain.invoke(test_input)
print(result)  # 'Ich liebe das Programmieren.'

探索MLflow Tracking UI,可以更深入地理解被记录的信息。

应用场景分析

可以通过MLflow UI分析运行的调用堆栈,了解LangChain组件的执行情况。此外,MLflow还能记录模型定义、依赖和输入输出样例,确保实验的可复现性和透明性。

实践建议

  • 使用mlflow.langchain.autolog()进行自动记录以简化追踪过程。
  • 为每个实验创建专属的实验空间以保持工作流的清晰结构。
  • 在复杂场景中使用MLflow Callbacks进行半自动化追踪。

结束语:如果遇到问题欢迎在评论区交流。

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值